Bài 2. Cho tam giác ABC cân tại A có đường cao AH. a) Chứng minh AH là đường trung trực của BC. b) Gọi M là trung điểm của cạnh AC, đường thẳng vuông góc với AC tại M cắt AH tại E. Chứng minh sAEB cân. c) Lấy điểm K sao cho M là trung điểm của KE. Chứng minh KC vuông góc BC. d) Trên cạnh AB và AC lần lượt lấy điểm D và F bất kì sao cho AD=CF. Chứng minh 2DE > DF
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
7 tháng 3 2020
b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)
AB = 6; AC = 8
=> 6^2 + 8^2 = BC^2
=> BC^2 = 100
=> BC = 10 do BC > 0
Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A
=> AM = BC/2
=> AM = 10 : 2 = 5
b, xét tam giác BEC có : EM là trung tuyến
EM là đường cao
=> tam giác BEC cân tại E (định lí)
24 tháng 4 2023
1:
a: \(BC=\sqrt{6^2+8^2}=10cm\)
=>AM=10/2=5cm
b: Xét ΔEBC có
EM vừa là đường cao, vừa là trung tuyến
=>ΔEBC cân tại E
Bài 2:
Xét ΔBAE vuông tại A và ΔBHE vuông tại H co
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH