cho đoạn thẳng ab cố định vẽ 2 tia Ax và By song song với nhau di động cùng nằm trên cùng một nửa mặt phẳng bờ AB vẽ tia phân giác góc ABy và BAx giao nhau tại O. Gọi H,I,K lần lượt là hình chiếu của O xuống Ax,AO,By
a/ CM 3 điểm H,I,K thẳng hàng
b/ AH+BK luôn không đổi. CM A,O,B thuộc đường tròn ,đường kính AB ; H,I,K thuộc đường tròn đường kính HK
MỌI NGƯỜI GIÚP MK VỚI Ạ .MÌNH ĐANG CẦN GẤP. CẢM ƠN
a: Sửa đề:I là chân đường cao kẻ từ O xuống AB. Chứng minh H,O,K thẳng hàng
Xét tứ giác AHOI có
\(\widehat{AHO}+\widehat{AIO}=180^0\)
=>AHOI là tứ giác nội tiếp
=>\(\widehat{HOI}+\widehat{HAI}=180^0\)
Xét tứ giác OIBK có \(\widehat{OIB}+\widehat{OKB}=180^0\)
=>OIBK là tứ giác nội tiếp
=>\(\widehat{IOK}+\widehat{IBK}=180^0\)
AH//BK
=>\(\widehat{HAI}+\widehat{KBI}=180^0\)
\(\widehat{HOI}+\widehat{KOI}\)
\(=180^0-\widehat{HAI}+180^0-\widehat{KBA}\)
\(=360^0-180^0=180^0\)
=>H,O,K thẳng hàng
b: Xét ΔAHO vuông tại H và ΔAIO vuông tại I có
AO chung
\(\widehat{HAO}=\widehat{IAO}\)
Do đó: ΔAHO=ΔAIO
=>AH=AI
Xét ΔOIB vuông tại I và ΔOKB vuông tại K có
BO chung
\(\widehat{IBO}=\widehat{KBO}\)
Do đó: ΔOIB=ΔOKB
=>BI=BK
AH+BK=AI+IB=AB không đổi
\(\widehat{OBA}+\widehat{OAB}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{KBA}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)
=>ΔOAB vuông tại O
=>ΔOAB nội tiếp đường tròn đường kính BA
\(\widehat{HIK}=\widehat{HIO}+\widehat{KIO}\)
\(=\widehat{HAO}+\widehat{OBK}\)
\(=\widehat{OAB}+\widehat{OBA}=90^0\)
=>ΔHIK vuông tại I
=>ΔHIK nội tiếp đường tròn đường kính HK