Cho dãy un xác định bởi \(u_1=1\)và \(\dfrac{u_{n-1}^2+2021}{2u_{n-1}}\).Chứng minh dãy đó có giới hạn và tìm giới hạn dãy đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh dãy bị chặn trên bởi 2
Thật vậy, với \(n=1;2\) thỏa mãn
Giả sử điều đó cũng đúng với \(n=k\) , tức \(u_k< 2\)
Ta cần chứng minh \(u_{k+1}< 2\)
Ta có: \(u_{k+1}=\sqrt{3u_k-2}< \sqrt{3.2-2}=2\) (đpcm)
Tương tự, ta cũng quy nạp được dễ dàng \(u_n>1\)
Mặt khác: \(u_n-u_{n-1}=\sqrt{3u_{n-1}-2}-u_{n-1}=\dfrac{3u_{n-1}-2-u_{n-1}^2}{\sqrt{3u_{n-1}-2}+u_{n-1}}\)
\(=\dfrac{\left(2-u_{n-1}\right)\left(u_{n-1}-1\right)}{\sqrt{3u_{n-1}-2}+u_{n-1}}>0\)
\(\Rightarrow u_n>u_{n-1}\Rightarrow\) dãy tăng
Dãy tăng và bị chặn trên nên có giới hạn hữu hạn.
Gọi giới hạn đó là k thì:
\(k=\sqrt{3k-2}\Leftrightarrow k=2\)
Lời giải:
Bằng quy nạp ta dễ chứng minh được $u_n< 1$
$u_{n+1}-u_n=\frac{1}{2-u_n}-u_n=\frac{(u_n-1)^2}{2-u_n}>0$ với mọi $u_n< 1$
$\Rightarrow u_{n+1}>u_n$. Vậy $(u_n)$ là dãy tăng và bị chặn trên.
Gọi $\lim u_n=a$ thì $a=\frac{1}{2-a}\Rightarrow 2a-a^2=1$
$\Leftrightarrow (a-1)^2=0\Leftrightarrow a=1$
Đáp án B
Số xấu thế nhỉ?
\(u_n=v_n+\dfrac{\sqrt{5}-3}{2}\)
\(\Rightarrow v_{n+1}+\dfrac{\sqrt{5}-3}{2}=-\dfrac{1}{3+v_n+\dfrac{\sqrt{5}-3}{2}}\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=u_1-\dfrac{\sqrt{5}-3}{2}=\dfrac{5-\sqrt{5}}{2}\\v_{n+1}=\dfrac{\dfrac{3-\sqrt{5}}{2}v_n}{\dfrac{3+\sqrt{5}}{2}+v_n}\end{matrix}\right.\)
\(v_n=\dfrac{1}{y_n}\Rightarrow\dfrac{1}{y_{n+1}}=\dfrac{\dfrac{3-\sqrt{5}}{2}.\dfrac{1}{y_n}}{\dfrac{3+\sqrt{5}}{2}+\dfrac{1}{y_n}}\)
\(\Rightarrow\dfrac{1}{y_{n+1}}=\dfrac{3-\sqrt{5}}{2y_n\left(\dfrac{3+\sqrt{5}}{2}+\dfrac{1}{y_n}\right)}=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)y_n+2}\)
\(\Leftrightarrow y_{n+1}=\dfrac{\left(3+\sqrt{5}\right)y_n}{3-\sqrt{5}}+\dfrac{2}{3-\sqrt{5}}\)
\(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{v_1}=\dfrac{2}{5-\sqrt{5}}\\y_{n+1}=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}y_n+\dfrac{2}{3-\sqrt{5}}\end{matrix}\right.\)
\(z_n=y_n+\dfrac{\sqrt{5}}{5}\Rightarrow\left\{{}\begin{matrix}z_1=y_1+\dfrac{\sqrt{5}}{5}=\dfrac{5+3\sqrt{5}}{10}\\z_{n+1}=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}z_n\end{matrix}\right.\)
\(\Rightarrow z_n:csn-co:\left\{{}\begin{matrix}z_1=\dfrac{5+3\sqrt{5}}{10}\\q=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\end{matrix}\right.\)
\(\Rightarrow z_{n+1}=\dfrac{5+3\sqrt{5}}{10}.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n\)
\(\Rightarrow y_{n+1}=z_{n+1}-\dfrac{\sqrt{5}}{5}=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}\)
\(v_{n+1}=\dfrac{1}{y_{n+1}}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}\)
\(u_{n+1}=v_{n+1}+\dfrac{\sqrt{5}-3}{2}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}+\dfrac{\sqrt{5}-3}{2}\)
Xét:
\(u_{n+2}-u_{n+1}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)-\dfrac{\sqrt{5}}{5}}+\dfrac{\sqrt{5}-2}{2}-\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}-\dfrac{\sqrt{5}-2}{2}\)
\(=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\dfrac{3+\sqrt{5}}{3-\sqrt{5}}-\dfrac{\sqrt{5}}{5}}-\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}\)
\(=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)}{.....}\)
\(=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n\left(1-\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)}{....}=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(-\dfrac{5+3\sqrt{5}}{2}\right)}{...}< 0\)
\(\Rightarrow\) dãy giảm
\(\Rightarrow u_1>u_2>....>u_n\)
\(\Rightarrow\lim\limits u_n=1\)
Bn tham khảo đây nhé: https://diendantoanhoc.org/topic/140204-t%C3%A0i-li%E1%BB%87u-d%C3%A3y-s%E1%BB%91/
Dễ thấy \(u_n>0,\forall n\inℕ^∗\).
Ta có \(u_{n+1}-u_n=\dfrac{u_n^2+2021}{2u_n}-u_n=\dfrac{2021-u_n^2}{2u_n}\)
Với \(n\ge2\) thì \(u_n=\dfrac{u_{n-1}^2+2021}{2u_{n-1}}\) \(=\dfrac{u_{n-1}}{2}+\dfrac{2021}{2u_{n-1}}\) \(>2\sqrt{\dfrac{u_{n-1}}{2}.\dfrac{2021}{2u_{n-1}}}\) \(=\sqrt{2021}\)
Vậy \(u_n>\sqrt{2021},\forall n\ge2\), suy ra \(u_{n+1}-u_n=\dfrac{2021-u_n^2}{2u_n}< 0,\forall n\inℕ^∗\)
\(\Rightarrow\) Dãy \(\left(u_n\right)\) là dãy giảm. Mà \(u_n>\sqrt{2021}\) \(\Rightarrow\left(u_n\right)\) có giới hạn hữu hạn. Đặt \(\lim\limits_{n\rightarrow+\infty}u_n=L\) \(\Rightarrow L=\dfrac{L^2+2021}{2L}\) \(\Leftrightarrow L=\sqrt{2021}\)
Vậy \(\lim\limits_{n\rightarrow+\infty}u_n=\sqrt{2021}\)
Dễ thấy ��>0,∀�∈N∗un>0,∀n∈N∗.
Ta có ��+1−��=��2+20212��−��=2021−��22��un+1−un=2unun2+2021−un=2un2021−un2
Với �≥2n≥2 thì ��=��−12+20212��−1un=2un−1un−12+2021 =��−12+20212��−1=2un−1+2un−12021 >2��−12.20212��−1>22un−1.2un−12021 =2021=2021
Vậy ��>2021,∀�≥2un>2021,∀n≥2, suy ra ��+1−��=2021−��22��<0,∀�∈N∗un+1−un=2un2021−un2<0,∀n∈N∗
⇒⇒ Dãy (��)(un) là dãy giảm. Mà ��>2021un>2021 ⇒(��)⇒(un) có giới hạn hữu hạn. Đặt lim�→+∞��=�n→+∞limun=L ⇒�=�2+20212�⇒L=2LL2+2021 ⇔�=2021⇔L=2021
Vậy lim�→+∞��=2021n→+∞limun=2021