Hoạt động 4
Thực hiện các hoạt động sau:
a) So sánh: \({2^{\frac{6}{3}}}\) và \({2^2}\)
b) So sánh: \({2^{\frac{6}{3}}}\) và \(\sqrt[3]{{{2^6}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
a: \(log_2\left(mn\right)=log_2\left(2^7\cdot2^3\right)=7+3=10\)
\(log_2m+log_2n=log_22^7+log_22^3=7+3=10\)
=>\(log_2\left(mn\right)=log_2m+log_2n\)
b: \(log_2\left(\dfrac{m}{n}\right)=log_2\left(\dfrac{2^7}{2^3}\right)=7-3=4\)
\(log_2m-log_2n=log_22^7-log_22^3=7-3=4\)
=>\(log_2\left(\dfrac{m}{n}\right)=log_2m-log_2n\)
a) \(\log_2\left(mn\right)=\log_2\left(2^7.2^3\right)=\log_22^{7+3}=\log_22^{10}=10.\log_22=10.1=10\)
\(\log_2m+\log_2n=\log_22^7+\log_22^3=7\log_22+3\log_22=7.1+3.1=7+3=10\)
b) \(\log_2\left(\dfrac{m}{n}\right)=\log_2\dfrac{2^7}{2^3}=\log_22^4=4.\log_22=4.1=4\)
\(\log_2m-\log_2n=\log_22^7-\log_22^3=7.\log_22-3\log_22=7.1-3.1=4\)
a) \(6 > 5\)
b) \( - 5\) là số nguyên âm nên \( - 5 < 0\)
c) \( - 6\) là số nguyên âm, 5 là số nguyên dương nên \( - 6 < 5\)
d) \( - 8\) và \( - 6\) là các số nguyên âm và có số đối lần lượt là 8 và 6.
\(8 > 6 \Rightarrow - 8 < - 6\)
e) 3 là số nguyên dương, \( - 10\) là số nguyên âm nên \(3 > - 10\)
g) \( - 2\) và \( - 5\) là các số nguyên âm có số đối lần lượt là 2 và 5.
\(2 < 5 \Rightarrow - 2 > - 5\)
a, Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên hàm số nghịch biến trên \(\left(0;+\infty\right)\)
Mà \(4,8< 5,2\Rightarrow log_{\dfrac{1}{2}}4,8>log_{\dfrac{1}{2}}5,2\)
b, Ta có: \(log_{\sqrt{5}}2=2log_52=log_54\)
Hàm số \(y=log_5x\) có cơ số 5 > 1 nên hàm số đồng biến trên \(\left(0;+\infty\right)\)
Do \(4>2\sqrt{2}\Rightarrow log_54>log_52\sqrt{2}\Rightarrow log_{\sqrt{5}}2>log_52\sqrt{2}\)
c, Ta có: \(-log_{\dfrac{1}{4}}2=-\dfrac{1}{2}log_{\dfrac{1}{2}}2=log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}\)
Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên nghịch biến trên \(\left(0;+\infty\right)\)
Do \(\dfrac{1}{\sqrt{2}}>0,4\Rightarrow log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}< log_{\dfrac{1}{2}}0,4\Rightarrow-log_{\dfrac{1}{4}}2< log_{\dfrac{1}{2}}0,4\)
a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)
c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)
b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)
d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)
a) Ta có:
Vì nên
Vậy .
b) Ta có:
Vì nên
Vậy .
c) Ta có:
Vì nên
Vậy .
d) Ta có:
Vì nên
Vậy .
a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)
b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)
a) Vì \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)
\(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)
\(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)
b) Vì \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)
\(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)
\(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)
\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
\(B=\frac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}\right)^2-3}=\frac{........}{2\sqrt{2}}=1+\sqrt{2}+\sqrt{3}\)
B -A =1 =>A<B
a: \(2^{\dfrac{6}{3}}=2^2\)
b: \(2^{\dfrac{6}{3}}=2^2=4\)
\(\sqrt[3]{2^6}=\sqrt[3]{64}=4\)
=>\(2^{\dfrac{6}{3}}=\sqrt[3]{2^6}\)