\(2\sqrt[3]{26}\) 

b)\(2\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2023

a) \(6=\sqrt[3]{6^3}=\sqrt{216}>\sqrt[3]{208}=2\sqrt[3]{26}\)

b) \(2\sqrt[3]{6}=\sqrt[3]{2^3.6}=\sqrt[3]{48}>\sqrt[3]{47}\)

24 tháng 8 2020

1.a)

\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)

\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)

Suy ra VT > 7

1.b)

\(\sqrt{16}+\sqrt{25}=4+5=9\)

2.a)

\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)

b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)

Các câu còn lại bạn làm tương tự nhé!

25 tháng 8 2020

c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)

\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)

d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)

24 tháng 6 2018

a) Ta có:

\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)

\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)

Mà \(\sqrt{180}< \sqrt{200}\)

Vậy: \(6\sqrt{5}< 5\sqrt{6}\)

x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)

Công hai vế của BĐT cho 3: 

Suy ra: \(\sqrt{8}+3< 3+3=6\)

Vậy: \(\sqrt{8}+3< 6\)

b) Ta có:

\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)

Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)

Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)

Vậy.....

d) Ta có: 

\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)

Vậy ......

e) Ta có: 

\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)

\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)

Mà \(3\sqrt{2}>2\sqrt{3}\)

Vậy .....

f) ........... Đang thinking

24 tháng 10 2019

đang dùng máy tínhmaf

4 tháng 8 2018

Hãy tích cho tui đi

Nếu bạn tích tui

Tui không tích lại đâu

THANKS

4 tháng 8 2018

\(2=\sqrt{4}>\sqrt{3}\)

\(6=\sqrt{36}< \sqrt{41}\)

\(7=\sqrt{49}>\sqrt{47}\)

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

22 tháng 6 2017

a) \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)

b) \(6\sqrt{5}=\sqrt{36}.\sqrt{5}=\sqrt{36.5}=\sqrt{180}>\sqrt{150}=\sqrt{25}.\sqrt{6}=5\sqrt{6}\)

a) 2√3=√4.√3=√12<√18=√9.√2=3√2

b) 6√5=√36.√5=√36.5=√180>√150=√25.√6=5√6

a) 7 và \(\sqrt{37}+1\)

=7 và 7,08

=>......

b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)

=-3,95 và 9,95

=>.....

3 tháng 8 2018

a)Ta có:  \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)

Vì \(\sqrt{20}< \sqrt{50}\)

Nên \(2\sqrt{5}< 5\sqrt{2}\)

b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)

Vì \(\sqrt{117}< \sqrt{176}\)

Nên \(3\sqrt{13}< 4\sqrt{11}\)

c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)

\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)

Vì \(\sqrt{\frac{63}{16}}>1\)

\(\sqrt{\frac{4}{5}}< 1\)

Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)

Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)

17 tháng 5 2017

đừng chửi mik nha, mik ms hk lp 7 àk

4 tháng 7 2018

1)  \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)

\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)

2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)

\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)

3)  \(2=\sqrt{4}>\sqrt{3}\)

\(\Rightarrow\)\(2-1>\sqrt{3}-1\)

hay  \(1>\sqrt{3}-1\)

4)  \(9-4\sqrt{5}< 16\)

5) \(\sqrt{2}>\sqrt{1}=1\)

\(\Rightarrow\)\(\sqrt{2}+1>2\)

5 tháng 7 2018

Cảm ơn bạn nhiều nha!

3 tháng 7 2017

a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)

\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)

\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)

\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)

vậy \(\sqrt{7}-\sqrt{2}>1\)

câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha 

3 tháng 7 2017

Bài này cũng dễ

a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì

\(\sqrt{7}-\sqrt{2}=1,231537749\)

\(1=1\)

b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì

\(\sqrt{8}+\sqrt{5}=5,064495102\) 

\(\sqrt{7}+\sqrt{6}=5,095241054\)

c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì

\(\sqrt{2005}+\sqrt{2007}=89,57677992\)

\(\sqrt{2006}=44,78839135\)