cho a1 , a2,.., a2017 là các số tự nhiên thỏa mãn \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2017}^2}>4\)chứng minh rằng trong 2017 số trên tồn tại ít nhất 4 số bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2015 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử
\(a_1< a_2< ...< a_{2015}\)
Vì \(a_1,a_2,...,a_{2015}\) đều là số nguyên dương nên ta suy ra
\(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)
Suy ra
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2015}\right)\)
\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)
Mâu thuẫn với giả thiết
Do đó điều giả sử là sai
Vậy trong 2015 số đã cho phải có ít nhất 2 số bằng nhau
Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được
Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5
Theo đề bài ta có
Xét 4 số a1;a2;a3;a4
a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay a1.a3=a2.a4) (1)
Xét 4 số a1;a2;a3;a5
a1.a5=a2.a3 (2)
Từ (1) và (2) suy ra a4=a5(không thỏa mãn)
Suy ra chỉ có 4 số khác nhau trong đó
Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng
Giả sử a1, a2, ..., a2017 là 2017 số khác nhau.
Và0 < a1 < a2 ... < a2017
Vì là số nguyên dương nên ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2017}\)
\(< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2016}{2}=1009\)
Từ đây ta thấy rằng nếu như 2017 số đó là khác nhau thì tổng luôn < 1009 vậy nên để tổng đó bằng 1009 thì phải có ít nhất 2 trong 2017 số đó bằng nhau
có bạn nào làm được bài này theo nguyên lí Đi - rich - lê ko
Đề sai rồi. Chỉ cần \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.
xin đính chính lại là VT > 5. Bạn giúp mình bài này với