(ko cần vẽ hình)
Cho tam giác ABC (AB < AC) có hai đường cao BD và CE cắt nhau tại H. Lấy I là trung điểm của BC.
a) Gọi K là điểm đối xứng của H qua I. CMR: tứ giác BHCK là hình bình hành
b) Xác định tâm O của đường tròn qua các điểm A, B, K, C
c) Chứng minh: OI // AH
d) CMR: BE.BA + CD.CA = \(BC^2\)
a: Xét tứ giác BHCK có
I là trung điểm chung của BC và HK
=>BHCK là hình bình hành
b: BHCK là hbh
=>BH//CK và BK//CH
=>BK vuông góc AB và CK vuông góc CA
góc ABK=góc ACK=90 độ
=>ABKC nội tiếp đường tròn đường kính AK
=>O là trung điểm của AK
c: Xét ΔKAH có
KO/KA=KI/KH=1/2
nên OI//AH
d: gọi giao của AH với BC là F
=>AH vuông góc BC tại F
Xét ΔBEC vuông tại E và ΔBFA vuông tại F có
góc B chung
=>ΔBEC đồng dạng với ΔBFA
=>BE/BF=BC/BA
=>BE*BA=BF*BC
Xét ΔCDB vuông tại D và ΔCFA vuông tại F có
góc C chung
=>ΔCDB đồng dạng với ΔCFA
=>CD/CF=CB/CA
=>CD*CA=CF*CB
=>BE*BA+CD*CA=BC^2