cho đa thúc: f(x)=x19+...+x+1
a,hãy so sánh 2f(3) và A=320+1
b,CMR:2f(3)+1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2f(1/2)-1/2f(2)=1/4 và 2f(2)-2f(1/2)=4
=>f(2)=17/6
2f(1/3)-1/3*f(3)=1/9 và 2*f(3)-3*f(1/3)=9
=>f(1/3)=29/27
*xl cậu nha ;-; câu cuối mình chưa học nên kbiet làm ;-;;;.
\(a,f\left(-3\right)=9;f\left(-\dfrac{1}{2}\right)=\dfrac{1}{4};f\left(0\right)=0\\ g\left(1\right)=2;g\left(2\right)=1;g\left(3\right)=0\\ b,2f\left(a\right)=g\left(a\right)\\ \Leftrightarrow2a^2=3-a\\ \Leftrightarrow2a^2+a-3=0\\ \Leftrightarrow2a^2-2a+3a-3=0\\ \Leftrightarrow2a\left(a-1\right)+3\left(a-1\right)=0\\ \Leftrightarrow\left(2a+3\right)\left(a-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{3}{2}\end{matrix}\right.\)
b: Ta có: \(2\cdot f\left(a\right)=g\left(a\right)\)
\(\Leftrightarrow2a^2=3-a\)
\(\Leftrightarrow2a^2+a-3=0\)
\(\Leftrightarrow2a^2+3a-2a-3=0\)
\(\Leftrightarrow\left(2a+3\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{3}{2}\end{matrix}\right.\)
a: \(2\cdot f\left(3\right)=2\cdot\left(3^{19}+3^{18}+...+3+1\right)\)
Đặt B=3^19+3^18+...+3+1
=>3B=3^20+3^19+...+3^2+3
=>2B=3^20-1
=>2*f(3)=A
b: Chứng minh cái gì vậy bạn?