Cho 6 so nguyen duong:a <b <c <d<m <n
CM: a + c + m/ a + b +c +d +m +n<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a-1 là Ư(a+6) nên a+6\(⋮\)a-1
Ta có : a+6\(⋮\)a-1
\(\Rightarrow\)a-1+7\(⋮\)a-1
Vì a-1\(⋮\)a-1 nên 7\(⋮\)a-1
\(\Rightarrow a-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Có :
a-1 | -1 | 1 | -7 | 7 |
a | 0 | 2 | -6 | 8 |
Vậy a\(\in\){-6;0;2;8}
Vì 3a+5 là B(a-2) nên 3a+5\(⋮\)a-2
Ta có : 3a+5\(⋮\)a-2
\(\Rightarrow\)3a-6+11\(⋮\)a-2
\(\Rightarrow\)3a-6+11\(⋮\)a-2
\(\Rightarrow\)3(a-2)+11\(⋮\)a-2
Vì 3a+5\(⋮\)a-2 nên 11\(⋮\)a-2
\(\Rightarrow a-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Có :
a-2 | -1 | 1 | -11 | 11 |
a | 1 | 3 | -9 | 13 |
Vậy a\(\in\){-9;1;3;13}
A+C , Số cần tìm là 3: Bởi vì nếu số cần tìm là p\(\ne\)3
Thì p chia 3 dư 1 hoặc 2
Ta có p = 3n +1 hoặc p= 3n +2
=> p + 2 = 3n+1+2 =3n +3( chia hết cho 3 không phải là số nguyên tố)
p + 4 = 3n +2 + 4=3n+6 ( chia hết cho 3 không phải là số nguyên tố)
p+ 10= 3n+2 +10= 3n+12 ( chia hết cho 3 không phải là số nguyên tố)
p + 14=3n +1+14 = 3n+15( chia hết cho 3 không phải là số nguyên tố)
B) Câu B đề hơi lạ nên mình đoán đại luôn ^^ ( nếu có thêm p+14 là số nguyên tố thì giải tương tự câu A và C )
\(a+b=-4;b+c=-6;a+c=12\)
\(\Rightarrow a+b+b+c+a+c=\left(-4\right)+\left(-6\right)+\left(-12\right)=2\)
\(\Rightarrow2a+2b+2c=2\)
\(\Rightarrow\left(a+b+c\right)\cdot2=2\)\(\Rightarrow a+b+c=1\)
\(Do:\) \(a+b=-4\)
\(\Rightarrow a+b+c=\left(-4\right)+c=1\)
\(\Rightarrow c=5\)
Vì: \(a+c=12\)
\(\Rightarrow a+b+c=12+b=1\)
\(\Rightarrow b=-11\)
Và: \(b+c=-6\)
\(\Rightarrow a+b+c=a+\left(-6\right)=1\)
\(\Rightarrow a=7\)
\(\Rightarrow a=7;b=-11;c=5\)
Vậy: \(a=7;b=-11;c=5\)
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
Ta có: a < b => 2a < a + b
c < d => 2c < c + d
m < n => 2m < m + n
Cộng vế với vế lại ta được:
2(a + c + m) < a + b + c + d + m + n
=> \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) (đpcm)