K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

\(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right).x=5\)

\(\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{21-19}{19.20.21}\right).x=5\)

 \(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right).x=5\)

 \(\left(\frac{1}{1.2}-\frac{1}{20.21}\right).x=5\)

 \(\frac{209}{420}.x=5\)

\(\Rightarrow x=5\div\frac{209}{420}=\frac{2100}{209}\)

24 tháng 6 2017

\(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right).x=5\)

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\right).2.x=5\)

\(\left(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{19.20}-\frac{1}{20.21}\right)\right).x.2=5\)

\(\left(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\right).x=5\div2\)

\(\left(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{20.21}\right)\right).x=2,5\)

\(\left(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{420}\right)\right).x=2,5\)

\(\left(\frac{1}{2}\times\frac{209}{420}\right)\times x=2,5\)

\(\frac{209}{840}\times x=2,5\)

\(x=2,5\div\frac{209}{840}=10\frac{10}{209}\)

14 tháng 5 2017

a, \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2=\left(\frac{-1}{4}\right)^2\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\\\frac{1}{x}-\frac{2}{3}=\frac{-1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{11}{12}\\\frac{1}{x}=\frac{5}{12}\end{cases}\Rightarrow\orbr{\begin{cases}11x=12\\5x=12\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{12}{11}\\x=\frac{12}{5}\end{cases}}}\)

b, \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

Đặt S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\)

2S = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{8.9.10}\)

2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)

2S = \(\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)

S = \(\frac{22}{45}:2=\frac{11}{45}\)

\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}\Rightarrow x=\frac{23}{11}\)

14 tháng 5 2017

a/ (1/x -2/3)2=1/16=(1/4)2

Có 2 trường hợp:

+/ 1/x -2/3= - 1/4

<=> 1/x =2/3 -1/4 = 5/12

=> x1=12/5

+/ 1/x - 2/3 =1/4

<=> 1/x = 2/3 +1/4= 11/12

=> x2=12/11

b/ Ta có: 

2/(1.2.3)=1/(1.2) - 1/2.3 ;  2/(2.3.4)=1/2.3 -1/3.4 ; ...; 2/(8.9.10)=1/8.9 -1/9.10

=> (1/1.2.3 + 1/2.3.4 +...+1/8.9.10)=23/45

<=> (1/1.2 -1/2.3 +1/2.3 -1/3.4 +...+1/8.9-1/9.10).x/2=23/45

<=> (1/1.2 -1/9.10).x/2 =23/45

<=> x.11/45=23/45

=> x=23/11

25 tháng 2 2017

a) \(\left|2x-1\right|=5\)

\(\Rightarrow\left[\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x\left[\begin{matrix}=3\\=-2\end{matrix}\right.\)

b) \(\left(5^x-1\right)3-2=70\)

\(\Rightarrow5^x.3-3=72\)

\(\Rightarrow5^x.3=75\)

\(\Rightarrow5^x=5^2\)

\(\Rightarrow x=2\)

Vậy \(x=2.\)

c) \(\left(x-1\frac{1}{2}\right)^2+\frac{3}{4}=\frac{1}{4}\)

\(\Rightarrow\left(x-1\frac{1}{2}\right)^2=\frac{-1}{2}\)

............. Làm tiếp nhé!

d) \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\) \(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\) \(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{23}{45}\) \(\Rightarrow\frac{22}{45}x=\frac{23}{45}\) \(\Rightarrow x=\frac{23}{45}:\frac{22}{45}\) \(\Rightarrow x=\frac{23}{22}\) Vậy \(x=\frac{23}{22}.\)
25 tháng 2 2017

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}.\frac{22}{45}x=\frac{23}{45}\)

\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)

\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)

\(\Rightarrow x=\frac{23}{11}\)

16 tháng 3 2017

\(pt\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{22}{45}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{22}{45}\)

\(\Leftrightarrow\frac{1}{2}.\frac{22}{45}.x=\frac{22}{45}\)

\(\Leftrightarrow\frac{1}{2}x=1\)

\(\Rightarrow x=2\)

6 tháng 8 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{420}\right)=\frac{1}{2}.\frac{209}{420}=\frac{209}{840}\)

6 tháng 8 2015

=\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{21-19}{19.20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{420}\right)=\frac{1}{2}.\frac{209}{420}=\frac{209}{840}\)

26 tháng 3 2019

a)Xét 1/2-1/3-1/6=3/6-2/6-1/6=0

=> (1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).(1/2-1/3-1/6)=(1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).0=0

b) 4A=1.2.3.4+2.3.4.4+..+x(x+1)(x+2)4

         =1.2.3.4+2.3.4.5-1.2.3.4+...+x(x+1)(x+2)(x+3)-x(x+1)(x+2)(x-1)

         = (x-1)x(x+1)(x+2)

=> A=x(x+1)(x+2)(x-1)/4

19 tháng 8 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{20.21}\right)\)

\(=\frac{1}{2}.\frac{209}{420}\)

\(=\frac{209}{840}\)

19 tháng 8 2018

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{19\cdot20\cdot21}\)

\(=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{19\cdot20\cdot21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}-\frac{1}{20\cdot21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot21}\right)\)

bn tự lm tp