K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: S=1(1+1)+2(1+2)+...+100(1+100)

=1+2+...+100+1^2+2^2+...+100^2

\(=\dfrac{100\cdot102}{2}+\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)

\(=100\cdot51+\dfrac{100\cdot101\cdot201}{6}\)

=343450

b: \(A=1\cdot2\cdot3+2\cdot3\cdot4+...+100\cdot101\cdot102\)

=>\(4\cdot A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+...+100\cdot101\cdot102\left(103-99\right)\)

=>4*A=100*101*102*103

=>A=25*101*102*103

 

DD
22 tháng 6 2021

Câu 2: 

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)

Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)

do đó phương trình ban đầu tương đương với: 

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)

\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)

7 tháng 3 2017

Ta có : A = 1.2 + 2.3 + 3.4 + ...... + 100.101

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 100.101.102

=> 3A = 100.101.102

=> A = 100.101.102/3

=> A = 343400

13 tháng 10 2021

S= 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

S x 3 = 99x100x101 A = 99x100x101 : 3 A = 333300

27 tháng 1 2019

Tính x1 + x2 +...+ x99 + x100 + x101 = 0

       (x1 + x2)+ ...+ ( x99 + x100)+ x101 = 0

          1 + ... + 1 + x101 = 0

             1 x 50 + x101 = 0

                  50 + x101 = 0

                          x101 = 0 - 50

                         x101 = -50

Ta có: x100 + x101 = 1

          x100 + (-50) = 1

         x100              = 1-(-50)

         x100              =51

Vậy x101 = 51