Giá trị biểu thức 4/3*5+4/5*7+4/7*9+.....+4/97*99+4/99*101/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A= 1-3+5-7+9-11+......+97-99
= -2+(-2)+(-2)+......+(-2)
= (-2).25=-50
b/B=-1-2-3-4-...-100
=-(1+2+3+4+...+100)
=-5050
c/C=1-2+3-4+5-6+......+99-100
= -1+(-1)+(-1)+.............+(-1)
=(-1).50=-50
d/D=1-2-3+4+5-6-7+8+9-....+94-95
= (1-2-3+4)+(5-6-7+8)+.......+(92-93-94+95)
= 0+0+0+...+0=0
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
\(1-2+3-4+5-6+.......+97-98+99-100+101\)
\(=\left(1-2\right)+\left(3-4\right)+\left(4-5\right)+.....+\left(97-98\right)+\left(99-100\right)+101\)
\(=50.\left(-1\right)+101=51\)
Số số hạng là :
\(\left(101-2\right):1+1=100\)
Tổng trên có giá trị là :
\(\dfrac{\left(101+2\right).100}{2}=5150\)
A= 2 + 3+4+...+96+97+98+99+100+101
Khoảng cách của dãy số trên là: 3-2 =1
Số số hạng của dãy số trên là: (101 - 2): 1 + 1 = 100 (số hạng)
Tổng A là: A = (101+2)\(\times\) 100 : 2 =5150
Đáp số: 5150
\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)
Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)
(101-5):4+1=25(số hạng)
=>A=25.(3+32+33+34)=25.120=3000
A= 1+(2-3)+(5-4)+...+(98-99)-100
=1-1+1-1+...+1-1-100
=-100
\(A=\dfrac{4}{3x5}+\dfrac{4}{5x7}+\dfrac{4}{7x9}+...+\dfrac{4}{97x99}+\dfrac{4}{99x101}\)
\(A=4x\left(\dfrac{1}{3x5}+\dfrac{1}{5x7}+\dfrac{1}{7x9}+...+\dfrac{1}{97x99}+\dfrac{1}{99x101}\right)\)
\(A=4x\left[\dfrac{1}{2}x\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\dfrac{1}{2}x\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\dfrac{1}{2}x\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\dfrac{1}{2}x\left(\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}x\left(\dfrac{1}{99}-\dfrac{1}{101}\right)\right]\)
\(A=4x\dfrac{1}{2}x\left[\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right]\)
\(A=2x\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2x\dfrac{98}{303}=\dfrac{916}{303}\)
Giúp mình nhé