K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2023

c, (4 + 1\(\dfrac{3}{5}\)) . 2\(\dfrac{1}{7}\) - 4\(\dfrac{2}{3}\)\(\dfrac{5}{9}\) 

= (4 + \(\dfrac{8}{5}\)) . \(\dfrac{15}{7}\) - \(\dfrac{14}{3}\)\(\dfrac{5}{9}\)

\(\dfrac{28}{5}\)\(\dfrac{15}{7}\) - \(\dfrac{42}{5}\)

= 12 - \(\dfrac{42}{5}\)

\(\dfrac{18}{5}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$. Khi đó:

$\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b(k-1)}{b}=k-1(1)$

$\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d(k-1)}{d}=k-1(2)$

Từ $(1); (2)\Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$

-------------------

$\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b(2k+3)}{b(2k-3)}=\frac{2k+3}{2k-3}(3)$

$\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d(2k+3)}{d(2k-3)}=\frac{2k+3}{2k-3}(4)$

Từ $(3); (4)\Rightarrow \frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}$

15 tháng 3 2022

0,5 × 3,16 × 4 × 2 × 0,25

= ( 0,5 × 2 ) × ( 0,25 × 4 ) × 3,16

= 1 × 1 × 3,16

= 1 × 3,16

= 3,16

cảm ơn ah

Bài 7:

a) Ta có: x:2=y:5

nên \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=21

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=3\\\dfrac{y}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=15\end{matrix}\right.\)

c) Ta có: x:2=y:7

nên \(\dfrac{x}{2}=\dfrac{y}{7}\)

mà x+y=18

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{7}=\dfrac{x+y}{2+7}=\dfrac{18}{9}=2\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=2\\\dfrac{y}{7}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=14\end{matrix}\right.\)

Bài 8:

a) Ta có: \(\dfrac{a}{3}=\dfrac{b}{8}=\dfrac{c}{5}\)

nên \(\dfrac{2a}{6}=\dfrac{3b}{24}=\dfrac{c}{5}\)

mà 2a+3b-c=50

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2a}{6}=\dfrac{3b}{24}=\dfrac{c}{5}=\dfrac{2a+3b-c}{6+24-5}=\dfrac{50}{25}=2\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{a}{3}=2\\\dfrac{b}{8}=2\\\dfrac{c}{5}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=16\\c=10\end{matrix}\right.\)

Bài 8:

b) Ta có: \(\dfrac{x}{10}=\dfrac{y}{5}\)

nên \(\dfrac{x}{20}=\dfrac{y}{10}\)(1)

Ta có: \(\dfrac{y}{2}=\dfrac{z}{3}\)

nên \(\dfrac{y}{10}=\dfrac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\)

\(\Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)

mà 2x-3y+4z=330

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{20}=\dfrac{33}{7}\\\dfrac{y}{10}=\dfrac{33}{7}\\\dfrac{z}{15}=\dfrac{33}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{660}{7}\\y=\dfrac{330}{7}\\z=\dfrac{495}{7}\end{matrix}\right.\)

c) Ta có: 3x=2y

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

hay \(\dfrac{x}{10}=\dfrac{y}{15}\)(1)

Ta có: 7x=5z

nên \(\dfrac{x}{5}=\dfrac{z}{7}\)

hay \(\dfrac{x}{10}=\dfrac{z}{14}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{14}\)

mà x-y+z=32

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{14}=\dfrac{x-y+z}{10-15+14}=\dfrac{32}{9}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{32}{9}\\\dfrac{y}{15}=\dfrac{32}{9}\\\dfrac{z}{14}=\dfrac{32}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{320}{9}\\y=\dfrac{480}{9}=\dfrac{160}{3}\\z=\dfrac{448}{9}\end{matrix}\right.\)

27 tháng 7 2020

Gọi số tự nhiên cần tìm là a

Ta có : \(\hept{\begin{cases}a⋮5\\a⋮7\\a⋮9\end{cases}}\Rightarrow a\in BC\left(5;7;9\right)\)

mà a nhỏ nhất có thể

=> \(a=BCNN\left(5;7;9\right)\)

Vì ƯCLN(5;7;9) = 1

=>  BCNN(5;7;9) = 5.7.9 = 315

=> a = 315 

Vậy số cần tìm là 315

27 tháng 7 2020

Gọi số tự nhiên cần tìm là a 

Theo đề bài : a chia hết cho 5 , a chia hết cho 7 , a chia hết cho 9 và a là số tự nhiên nhỏ nhất 

=> a = BCNN(5, 7 , 9 )

BCNN(5, 7 , 9) = 5 . 7 . 32 = 315

=> a = 315

Vậy số cần tìm là 315

2 tháng 5 2023

Bài 6

a) (3x² + 5) + [(2x² - 5x) - (5x² + 4)]

= 3x² + 5 + (2x² - 5x - 5x² - 4)

= 3x² + 5 + 2x² - 5x - 5x² - 4

= (3x² + 2x² - 5x²) - 5x + (5 - 4)

= -5x + 1

---------‐----------

b) (x + 2)(x² - 2x + 4)

= x.x² - x.2x + x.4 + 2.x² - 2.2x + 2.4

= x³ - 2x² + 4x + 2x² - 4x + 8

= x³ + (-2x² + 2x²) + (4x - 4x) + 8

= x³ + 8

-------------------

c) (4x³ - 8x² + 13x - 5) : (2x - 1)

= (4x³ - 2x² - 6x² + 3x + 10x - 5) : (2x - 1)

= [(4x³ - 2x²) - (6x² - 3x) + (10x - 5)] : (2x - 1)

= [2x²(2x - 1) - 3x(2x - 1) + 5(2x - 1)] : (2x - 1)

= (2x - 1)(2x² - 3x + 5) : (2x - 1)

= 2x² - 3x + 5

2 tháng 5 2023

6:

Số tiền phải trả góp là:

350000*24=8400000(đồng)

Số tiền mua chiếc TV là:

8400000:60%=14000000(đồng)

28 tháng 5 2022

bạn ơi trong olm không có cái đó ạ phân số trong olm chỉ được biểu thị bằng dấu gạch chéo thôi nếu muốn dùng phân số theo ý bạn thì phải dùng latex nhưng trong olm không có latex cái này thì tùy thuộc vào olm chế ra thôi chứ mình cũng không phải Admin nên ko biết rõ lắm