Thực hiện phép tính:
(5 + 3x)^3
(x + 2y + z)(x +2y -z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=2x4x^2+2x2x+2x-4x^2-2x-1\)
\(=8x^3+4x^2+2x-4x^2-2x-1\)
\(=8x^3-1\)
b) \(\left(x+2y+z\right)\left(x+2y-z\right)\)
\(=x^2+2xy-xz+2xy+4y^2-2yz+xz+2yz-z^2\)
\(=x^2+2xy+2xy+4y^2-z^2\)
c)\(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=x^6+3x^4+9x^2-3x^4-9x^2-27\)
\(=x^6-27\)
Áp dụng hằng đẳng thức \(\left(a+b\right)\left(a-b\right)=a^2-b^2\)ta đc:
\(\left(x+2y+z\right)\left(x+2y-z\right)=\left[\left(x+2y\right)+z\right]\left[\left(x+2y\right)-z\right]\)
\(=\left(x+2y\right)^2-z^2\)
\(=x^2+4xy+4y^2-z^{ }\)
( x + 2y + z ) ( x + 2y - z )
<=> ( x + 2y)2 - z2
<=> x2 + 4xy + 4y2 - z2
^^ Học tốt!
a) ( 3x + 2y - 1 )( x - 5 ) - ( x - 2 )2y
= 3x(x - 5) + 2y(x - 5) - 1(x - 5) - ( 2xy - 4y )
= 3x2 - 15x + 2xy - 10y - x + 5 - 2xy + 4y
= 3x2 - 16x - 6y + 5
b) ( 3x - 2 )( 3x + 2 ) - ( 2x + 1 )( 4x + 3 )
= [ ( 3x )2 - 22 ] - ( 8x2 + 10x + 3 )
= 9x2 - 4 - 8x2 - 10x - 3
= x2 - 10 - 7
a: \(=\dfrac{3x+6-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+10}{x^2-4}\)
b: \(=\dfrac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)
=x2-2x+1-8x+4x2-6+3x=5x2-7x-6
b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y
c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)
a) Ta có: ( x2 -1 )( x2 + 2x )
= x2( x2 + 2x ) - ( x2 + 2x )
= x4 + 2x3 - x2 - 2x
b) Ta có ( x + 3 )( x2 + 3x -5 )
= x( x2 + 3x -5 ) + 3( x2 + 3x -5 )
= x3 + 3x2 - 5x + 3x2 + 9x - 15
= x3 + 6x2 + 4x - 15
c) Ta có ( x -2y )( x2y2 - xy + 2y )
= x( x2y2 - xy + 2y ) - 2y( x2y2 - xy + 2y )
= x3y2 - x2y + 2xy - 2x2y3 + 2xy2 - 4y2
d) Ta có ( 1/2xy -1 )( x3 -2x -6 )
= 1/2xy( x3 -2x -6 ) - ( x3 -2x -6 )
= 1/2x4y - x2y - 3xy - x3 + 2x + 6
\(\left(5+3x\right)^3=5^3+3.5^2.3x+5.5.\left(3x\right)^2+\left(3x\right)^3\\ =125+225x+225x^2+27x^3\\ ---\\ \left(x+2y+z\right)\left(x+2y-z\right)\\ =\left(x+2y\right)^2-z^2\\ =x^2+4xy+4y^2-z^2\)
\(\left(5+3x\right)^3\\ =125+3\cdot25\cdot3x+3\cdot5\cdot9x^2+27x^3\\ =27x^3+135x^2+225x+125\)
\(\left(x+2y+z\right)\left(x+2y-z\right)\\ =\left(x+2y\right)^2-z^2\\ =x^2+4y^2-z^2+4xy\)