K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

A B C D O M N E K H

1) Ta có: ^MOB + ^BON = ^MON =900; ^NOC + ^BON = ^BOC = 900

=> ^MOB = ^NOC.

Xét \(\Delta\)OMB và \(\Delta\)ONC: ^MOB = ^NOC (cmt); OB=OC; ^OBM = ^OCN (=450)

=> \(\Delta\)OMB=\(\Delta\)ONC (g.c.g) => OM=ON (2 cạnh tương ứng)

Xét \(\Delta\)MON có: ^MON=900; OM=ON => \(\Delta\)MON vuông cân tại O (đpcm).

2) Ta có: \(\Delta\)OMB=\(\Delta\)ONC (cmt) => BM=CN => AB-BM=BC-CN => AM=BN

Suy ra \(\frac{AM}{BM}=\frac{BN}{CN}\). Mà \(\frac{BN}{CN}=\frac{AN}{EN}\)(Hệ quả ĐL Thales)

Nên \(\frac{AM}{BM}=\frac{AN}{EN}\)=> MN // BE (ĐL Thales đảo) (đpcm).

3) Do MN // BE (cmt) nên ^MNO = ^BKO = 450 (2 góc đồng vị).

Mà ^BCO = 450 => ^BKO = ^BCO =450 hay ^BKN = ^OCN => \(\Delta\)BNK ~ \(\Delta\)ONC (g.g)

\(\Rightarrow\frac{BN}{ON}=\frac{KN}{CN}\)hay \(\frac{BN}{KN}=\frac{ON}{CN}\)=> \(\Delta\)BON ~ \(\Delta\)KCN (c.g.c)

=> ^OBN = ^CKN => ^CKN=450 (Vì ^OBN=450)

Vậy ^BKC = ^BKO + ^CKN = 450+450 = 900 => CK vuông góc BE (đpcm).

4) KH // OM, OM vuông góc OK => KH vuông góc OK. Hay KH vuông góc NK

=> ^CKH = ^NKH - ^CKN = 900 - 450 =450 => KC là phân giác ^NKH

Suy ra \(\frac{KN}{KH}=\frac{CN}{CH}=\frac{BN}{BH}\)(ĐL đường phân giác trong tam giác) (1)

Dễ thấy KN là phân giác trong \(\Delta\)BKC => \(\frac{KC}{KB}=\frac{CN}{BN}=\frac{CH}{BH}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}=\frac{BN+CH}{BH}\Leftrightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BN+CH+CN}{BH}\)

\(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BH}{BH}=1\)(đpcm).

Em tham khảo nha.

Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)

\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)

Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)

\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)

Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

Gọi H là giao điểm của AC và BD 

Vì AF//BC 

Áp dụng hệ quả Talet : 

=> HF/HB = AH/HC 

Ta có : HE//HA = HB/HD 

Mà AB//CD 

=> HB/HA = HA/HC 

=> HE /HA = HF/HB 

=> EF//AB

=> EDCF là hình thang 

Vì ABCD là hình thang cân 

=> ADC = BCD 

AD = BC 

Xét ∆ACD và ∆BDC ta có : 

DC chung 

AD = BC 

ADC = BCD 

=> ∆ACD = ∆BDC (c.g.c)

=> BDC = ACD 

=> EDCF là hình thang cân (dpcm)

b) Kéo dài EF sao cho lần lượt cắt AD tại G và BC tại O 

Vì EF//DC (cmt)

=> GO//DC 

Mà DC//AB 

=> AB//GO//DC

=> GO là đường trung bình hình thang ABCD 

=> GO = \(\frac{5\:+\:10}{2}=\:7,5\)cm

Mà GO là đường trung bình hình thang 

=> G là trung điểm AD ; O là trung điểm BC 

Vì GO//AB 

=> GE//AB 

Mà G là trung điểm AD

=> GE là đường trung bình ∆ABD 

=> GE = \(\frac{5}{2}\)= 3,5 cm

Vì GO //AB

=> FO//AB 

Mà O là trung điểm BC 

=> FO là đường trung bình ∆ABC 

=> FO = \(\frac{5}{2}=\:3,5\)cm

=> EF = 7,5 - 3,5 - 3,5 = 0,5cm

3 tháng 4 2017

BẠN DÙNG ĐỊNH LÝ TA-LÉT ĐỂ C/M OM=ON

Vì OM // AB & OM // CD nên 

\(\frac{OM}{AB}=\frac{DM}{AD}\&\frac{OM}{CD}=\frac{AM}{AD}\)

\(\Rightarrow\frac{OM}{AB}+\frac{OM}{CD}=\frac{DM}{AD}+\frac{AM}{AD}\)

\(\Leftrightarrow OM\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DM+AM}{AD}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OM}\)(1)

TƯƠNG TỰ \(\frac{1}{AB}+\frac{1}{CB}=\frac{1}{ON}\)(2)

CỘNG VẾ VỚI VẾ CỦA (1) VÀ (2) TA CÓ:

\(2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{ON}\)MÀ OM=ON(C/M TRÊN) NÊN MN=2.OM

\(\Rightarrow2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{OM}=\frac{2}{OM}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2.OM}=\frac{2}{MN}\left(ĐPCM\right)\)

31 tháng 3 2017

Mình mới học lớp 5 thôi nên chỉ vẽ hình thôi à! Thông cảm nha!

Hình như sau:

Thấy đúng thì !