tính số đo góc \(\alpha\)pít
a) \(\tan\alpha+cotg\alpha=2\)
b) \(7\sin^2\alpha+5\cos^2\alpha\frac{13}{2}\)
m.n giúp mk giải bài này vs ạ !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)
\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)
\(\cot\alpha=1\Rightarrow\alpha=45^0\)
b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)
\(\Rightarrow\alpha=60^0\)
\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)
\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)
a/ \(\sin\alpha=\frac{C_đ}{C_h}\)
\(\cos\alpha=\frac{C_k}{C_h}\)
\(\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{C_đ}{C_h}}{\frac{C_k}{C_h}}=\frac{C_đ}{C_k}=\tan\alpha\)
b/ \(\frac{\cos\alpha}{\sin\alpha}=\frac{\frac{C_k}{C_h}}{\frac{C_đ}{C_h}}=\frac{C_k}{C_đ}=\cot\alpha\)
c/ \(\tan\alpha.\cot\alpha=\frac{C_đ}{C_k}.\frac{C_k}{C_đ}=1\)
d/ \(\sin^2\alpha=\frac{C_đ^2}{C_h^2}\)
\(\cos^2\alpha=\frac{C_k^2}{C_h^2}\)
\(\Rightarrow\sin^2\alpha+\cos^2\alpha=\frac{C_đ^2+C_k^2}{C_h^2}=\frac{C_h^2}{C_h^2}=1\)
P/s: hok trc lp 9 hay sao mà lm bài bài này?