K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

2.

Nếu 3 số x,y,z chia 3 khác số dư thì x+y+z chia hết cho 3
và (x-y),(y-z),(z-x) không chia hết cho 3
hay (x-y)(y-z)(z-x) không chia hết cho 3
=> (1) vô lí

+,Nếu trog 3 số 2 số có cùng số dư thì giả sử y,z cùng dư; x khác dư
khi đó x+y+z không c/h cho 3 ;
x-y và z-x không chia hết cho 3; y-z chia hết cho 3
=>(x-y).(y-z).(z-x) chia hết cho 3

=> (1) vô lí

Tóm lại 3 số x,y,z chia 3 cùng dư
khi đó (x-y),(y-z),(z-x) cùng chia hết cho 3
=> đpcm

7 tháng 7 2015

Chị sợ e kh hỉu nên chỵ làm dài dòng xíu nha. em hỉu r thi thu gọn lại bỏ bớt mấy chỗ k cần thiết
1. Vì p nguyên tố và p>3 => p không chia hết cho 3 => p=3k+1 hoặc p=3k+2
Nếu p = 3k+1 =>(p-1).(p+1) =(3k+1-1).(3k+1+1)= 3k(3k+2) 
Vì 3k chia hết 3 => 3k(3k+2) chia hết cko 3. Hay(p-1).(p+1) ckia hết cho 3 (1)
Tương tự p=3k+2 =>p+1 = 3k+3 chia hết cho 3 =)( p-1)(p+1) chia hết cho 3 (2)
từ (1),(2) => (p-1)(p+1) chia het cho 3
Vì p nto và p >3 => p lẻ => p = 2h+1
Ta có (p-1).(p+1)= (2h+1-1)(2h+1+1)= 2h(2h+2)
Mà 2h và 2h+1 là tích 2 số chẵn liên tiếp => 2h(2h+2) chia hết cho 8
Mà (3,8)=1 => (p-1)(p+1) chia hết cho 24

25 tháng 9 2016

46452007

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

6 tháng 11 2016

a)

b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)

\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)

\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)

Dấu = khi \(x=y=z=1\)

8 tháng 11 2016

a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)

Lấy \(T_0=a_0\)

      \(T_1=a_0+a_1\)

     \(T_2=a_0+a_1+a_2\)

    \(T_3=a_0+a_1+a_2+a_3\)

    \(T_4=a_0+a_1+a_2+a_3+a_4\)

Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:

TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh

TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.

17 tháng 6 2016

a) A = (x+y) + |x+y| 

  • Nếu x+y >= 0 thì A = x+y+x+y = 2(x+y) chia hết cho 2
  • Nếu x+y <0 thì A = 0 cũng chia hết cho 2.

b) B = x - y - |x-y|

  • Nếu x-y >= 0 thì B = x-y-x+y = 0 chia hết cho 2
  • Nếu x-y < 0 thì B = x - y + x - y = 2*(x-y) chia hết cho 2.

c) C = x - y - z + ||x+y| + z|

  • Nếu |x+y| + z >= 0 thì C = x - y - z + |x+y| + z = x+y + |x+y| - 2y = A - 2y chia hết cho 2. (A là biểu thức A phần a)
  • Nếu |x+y| + z < 0 thì C = x - y - z - |x+y| - z = x+y + |x+y| - 2y - 2z - 2|x+y| = A - 2y -2z - 2|x+y| chia hết cho 2. (A là biểu thức A phần a).
17 tháng 6 2016

Thanks nhá, yêu bạn chóa

8 tháng 6 2021

Có \(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)\)

\(=\left[\left(x+y\right)+z\right]^3-\left(x^3-y^3-z^3\right)\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-\left(x^3+y^3+z^3\right)\)

\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Do x,y,z nguyên và cùng tính chẵn lẻ \(\Rightarrow\left(x+y\right);\left(y+z\right);\left(z+x\right)\) đều là ba số chẵn

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮8\)

mà (3;8)=1 và 3.8=24

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮24\) (đpcm)

8 tháng 6 2021

Có (x+y+z)3−(x3+y3+z3)(x+y+z)3−(x3+y3+z3)

=[(x+y)+z]3−(x3−y3−z3)=[(x+y)+z]3−(x3−y3−z3)

=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)

=3xy(x+y)+3(x+y)2z+3(x+y)z2=3xy(x+y)+3(x+y)2z+3(x+y)z2

=3(x+y)[xy+(x+y)z+z2]=3(x+y)[xy+(x+y)z+z2]

=3(x+y)[x(y+z)+z(y+z)]=3(x+y)[x(y+z)+z(y+z)]

=3(x+y)(y+z)(x+z)=3(x+y)(y+z)(x+z)

Do x,y,z nguyên và cùng tính chẵn lẻ ⇒(x+y);(y+z);(z+x)⇒(x+y);(y+z);(z+x) đều là ba số chẵn

⇒(x+y)(y+z)(z+x)⋮8⇒(x+y)(y+z)(z+x)⋮8

mà (3;8)=1 và 3.8=24

⇒3(x+y)(y+z)(z+x)⋮24⇒3(x+y)(y+z)(z+x)⋮24 (đpcm)

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

8 tháng 9 2019

toi ko bit lam chi biet lam anh thui

8 tháng 9 2019

Mk cũng khá tốt về Anh nha bạn