K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

a) \(\dfrac{3}{4xy}+\dfrac{5x}{2x^2z}+\dfrac{7}{6yz^2}\) (MSC: \(12x^2yz^2\))

\(=\dfrac{3\cdot3xz^2}{4xy\cdot3xz^2}+\dfrac{5x\cdot6yz}{2x^2z\cdot6yz}+\dfrac{7\cdot2x^2}{6yz^2\cdot2x^2}\)

\(=\dfrac{9xz^2}{12x^2yz^2}+\dfrac{30xyz}{12x^2yz^2}+\dfrac{14x^2}{12x^2yz^2}\)

\(=\dfrac{9xz^2+30xyz+14x^2}{12x^2yz^2}\)

\(=\dfrac{x\left(9z^2+30yz+14x\right)}{12x^2yz^2}\)

\(=\dfrac{9z^2+30yz+14x}{12x^2yz^2}\)

b) \(\dfrac{x^2}{x^2+3x}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x^2}{x\left(x+3\right)}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x}{x+3}+\dfrac{3}{x+3}+\dfrac{3}{x}\)

\(=\dfrac{x+3}{x+3}+\dfrac{3}{x}\)

\(=1+\dfrac{3}{x}\)

\(=\dfrac{x}{x}+\dfrac{3}{x}\)

\(=\dfrac{x+3}{x}\)

a: \(=\dfrac{3\cdot3\cdot xz^2+5x\cdot6\cdot y+7\cdot x^2\cdot2}{12x^2yz^2}=\dfrac{9xz^2+30xy+14x^2}{12x^2yz^2}\)

\(=\dfrac{9z^2+30y+14x}{12xyz^2}\)

b: \(=\dfrac{x}{x+3}+\dfrac{3}{x+3}+\dfrac{3}{x}=1+\dfrac{3}{x}=\dfrac{x+3}{x}\)

16 tháng 3 2020

a, \(\frac{4x+1}{2}-\frac{3x+2}{3}=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{12x+3-6x-4}{6}=\frac{6x-1}{6}\)

b, \(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}=\frac{x+3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x\left(x+1\right)}\)

\(=\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1}{x\left(x-1\right)}\)

\(\frac{4x+1}{2}-\frac{3x+2}{3}\)

\(=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{6x-1}{6}\)

tương tự đến hết nha a hay cj gì đps ! 

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

f)

$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$

$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$

$=\frac{x(x^2+1)}{(2-3x)^2}$
g)

$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$

$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$

h)

$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$

$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$

$=\frac{5x}{6(x-1)}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

d)

$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$

$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$

$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$

$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)

$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$

$=\frac{-3(x+7)}{2x+1}$

12 tháng 8 2020

Mình biết rồi, cảm ơn bạn

\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)

\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)

\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)

\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)

chỗ cuối tớ sai 

\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)

đây nha , e xin lỗi

6 tháng 11 2016

mk ko biết làm 

xin lỗi bn nhae

xin lỗi vì đã ko giúp được bn

chcus bn học gioi!

nhae@@@

6 tháng 11 2016

mình không biết làm

tk nhé@@@@@@@@@@@@@@@@@@@@

LOL

hihi

1 tháng 12 2016

\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)

\(=\left[\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right]\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x^2-x+1\right)-3+3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2-x+1-3+3x+3}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{3\left(x+1\right)^2}{\left(x+1\right)\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{3x}{x\left(x+2\right)}-\frac{2x-2}{x\left(x+2\right)}\)

\(=\frac{3x-2x+2}{x\left(x+2\right)}\)

\(=\frac{x+2}{x\left(x+2\right)}\)

\(=\frac{1}{x}\)

a) \(\frac{3x}{2x+4}+\frac{x+3}{x^2-4}\)

\(=\frac{3x}{2\left(x+2\right)}+\frac{x+3}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)+2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(=\frac{3x^2-6x+2x+6}{2\left(x^2-4\right)}\)

\(=\frac{3x^2-4x+6}{2\left(x^2-4\right)}\)