Chứng minh biểu thức :
x ( 2x + 1 ) - x2 ( x + 2 ) +m ( x3 - x + 3 )
Không phụ thuộc vào biến x
Giúp mk đi mk sẽ tk cho tất cả người nào giúp mk Bằng tất cả các nk của mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(2x+1)-x2(x+2)+(x3-x+3)= 2x2+x-x3-2x2+x3-x+3= 3
b)x (3x2-x+5)-(2x3+3x-16)-x(x2-x+2)= 3x3-x2+5x-2x3-3x+16-x3+x2-2x= 16
a)
\(\frac{x-1}{4}=\frac{2x+1}{5}\)
=> 5 ( x - 1 ) = 4 ( 2x + 1 )
=> 5x - 5 = 8x + 4
=> 5x - 8x = 4 + 5
=> -3x = 9
=> x = -3
b)
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)
=> ( x + 2 ) ( x + 1 ) = ( x - 3 ) ( x - 1 )
=> x^2 + x + 2x + 2 = x^2 - x - 3x + 3
=> x^2 + 3x + 2 = x^2 - 4x + 3
=> x^2 + 3x - x^2 + 4x = 3 - 2
=> 7x = 1
=> x = 1/7
A=2x2+3x-10x-15-2x2+6x+x+7=0x-8=-8
tích mình mình tích lại
a, Biểu thức = x^3-3x^2+3x-1-(x^3-1)-3.(x-x^2)
=x^3-3x^2+3x-1-x^2+1-3x+3x^2 = 0
=> giá trị của biểu thức trên ko phụ thuộc vào biến
ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)=x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)
=\(6x^2+2-6x^2+6=8\)ko phụ thuộc vào x
a) Rút gọn P = 3 Þ giá trị của biểu thức P không phụ thuộc vào giá trị của m.
b) Rút gọn Q = 9 Þ giá trị của biểu thức Q không phụ thuộc vào giá trị của m.
a)P=x(2x+1)-x2(x+2)+x3-x+3
P=2x2+x-x3-2x2+x3-x+3
P=(2x2-2x2)+(x-x)+(-x3+x3)+3
P= 0 + 0 + 0 +3
P=3
Vậy giá trị của của biểu thức đã cho không phụ thuộc vào giá trị của biến x