Chứng minh rằng: abcabc +7 là hợp số
abcabc+22 là hợp số
giải thích rõ ràng bằng cách lớp 6. Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) abcabc + 7 = abc.1001 + 7 = abc.143.7 + 7 = 7.(abc.143 + 1) chia hết cho 7
\(\Rightarrow\) abcabc + 7 là hợp số
b) abcabc + 22 = abc.1001 + 22 = abc.11.91 + 11.2 = 11.(abc.91 + 2) chia hết cho 11
\(\Rightarrow\) abcabc + 22 là hợp số
c) abcabc + 39 = abc.1001 + 39 = abc.13.77 + 13.3 = 13.(abc.77 + 3) chia hết cho 13
\(\Rightarrow\) abcabc + 39 là hợp số
\(\overline{abcabc}+7=\overline{abc}.1000+\overline{abc}+7=1001\overline{abc}+7=7.143.\overline{abc}+7=7\left(143\overline{abc}+1\right)\)là hợp số
\(\overline{abcabc}+22=\overline{abc}.1000+\overline{abc}+22=1001\overline{abc}+22=91.11.\overline{abc}+11.2=11\left(91\overline{abc}+2\right)\)là hợp số
Chứng minh abcabc + 7 là hợp số.
abcabc + 7 = (abc . 1000 + abc) + 7
=(abc . 1001) + 7
= (abc . 7 . 143) + 7⋮ 7 ( Vì abc.7.143 ⋮ 7 và 7 ⋮ 7 )
=> abcabc + 7 là hợp số (đpcm)
Chứng minh abcabc + 22 là hợp số.
abcabc + 22 = (abc. 1000 + abc) + 22
= (abc. 1001) + 22
= (abc . 11.91) + 11.2 ⋮ 11 ( Vì abc.11.91 ⋮11 và 11.2 ⋮11 )
=> abcabc + 22 là hợp số (đpcm).
a, Ta có : abcabc + 7 > 1
Lại có : abcabc + 7
= abc . 1000 + abc . 1 + 7 = abc . 1001 + 7
= 7 . 143 . abc + 7 = 7 ( abc . 143 + 1 ) chia hết cho 7
Vì : 143 . abc + 1 thuộc N
=> abcabc + 7 chia hết cho 7
=> abcabc + 7 là hợp số
b, Tương tự câu a
abcabc = abc. 1000 + abc= abc.1001 = abc.7.11.13
=> abcabc + 7 chia hết cho 7; abcabc + 22 chia hết cho 11; abcabc + 39 chia hết cho 13
=> các số đã cho là hợp số
a) Ta có : abcabc + 7 = abc x 1001 + 7
Vì 1001 chia hết cho 11 nên abc x 1001 chia hết cho 11
7 chia hết cho 7
Ta có abc x 1001 và 7 đều là các số có thể bị chia hết nên suy ra tổng là một hợp số.
abcabc = abc. 1000 + abc= abc.1001 = abc.7.11.13(có gạch trên đầu)
=> abcabc + 7 chia hết cho 7; abcabc + 22 chia hết cho 11; abcabc + 39 chia hết cho 13
=> các số đã cho là hợp số
a) Ta có abcabc + 7 > 1
Lại có: abcabc 7
= abc. 1000 + abc. 1 + 7 = abc. 1001 + 7
= 7 . 143 . abc + 7 = 7( abc. 143 + 1 ) chia het cho 7
Vi : 143 . abc thuoc N
=> abcabc + 7 chia het cho 7
=> abcabc + 7 la hop so
Cau a tuong tu cau b nhe, dung thif tk cho mk nhe, chuc bn hoc gioi
a) Ta có abcabc + 7 > 1
Lại có: abcabc
abc. 1000 + abc.1+7= abc.1+7
.....................
Vì 143 . abc \(\in\)N
\(\Rightarrow\)bạn tự biết nhé
a/ Ta có : abcabc + 7 = abc . 1001 + 7 = abc . 11 . 13 . 7 + 7 = 7 (abc . 11 . 13 + 1)
Vì 7 chia hết cho 7 => abcabc chia hết cho 7 => abcabc là hợp số
b/ Ta có : abcabc + 39 = abc . 1001 + 39 = abc . 11 .13 . 7 + 13 . 3 = 13 (abc . 11 . 7 + 3)
Vì 13 chia hết cho 13 => abcabc chia hết cho 13 => abcabc là hợp số
c/ Ta có : abcabc + 22 = abc . 1001 + 22 = abc . 11 . 13 . 7 + 11. 2 = 11 (abc . 13 . 7 + 2)
Vì 11 chia hết cho 11 => abcabc chia hết cho 11 => abcabc là hợp số
Ta có:
abcabc=abc*1001.
Mà 1001 chia hết cho 7 và 11.
=>abcabc chia hết cho 7 và 11.
=>abcabc+7 chia hết cho 7 và abcabc+22 chia hết cho 11.
Mà abcabc+7>7 và abcabc+22>11.
=>abcabc là hợp số (vì....)
Vậy....
Vì abcabc=1001*abc.
Mà 1001 chia hết cho cả 7 và 11.
=>abcabc luôn chia hết cho 7 và 11.
Mà 7 chia hết cho 7 và 22 chia hết cho 11;
abcabc+7>7 và abcabc+22>11..
=>abcabc+7 chia hết cho 7 và abcabc+22 chia hết cho 11(vì....)
Vậy.....