Đề: Cho ▲ABC vuông ở C có góc A bằng 60 độ .AE là tia phân giác của góc CAB (E thuộc BC) gọi D là hình chiếu của B trên tia AE, K là hình chiếu của E trên AB
Chứng minh :
a)EB là tia phân giác của góc DEK,ek là tia phân giác của góc BEA
b)EC-ED=EK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CAE=góc BAE=60/2=30 độ
góc KEB=90-30=60 độ
góc BED=góc AEC=90-30=60 độ
=>góc KEB=góc DEB
=>EB là phân giác của góc KED
góc AEK=góc BEK
=>EK là phân giác của góc BEA
b:Đề sai rồi bạn
Hình (tự vẽ)
a) ΔACE = ΔAKE
Xét hai tam giác vuông ACE và AKE có:
∠CAE = ∠KAE (AE là phân giác)
AE : cạnh chung
Do đó ΔACE = ΔAKE (cạnh huyền - góc nhọn)
b) EB > AC
Xét tam giác ABC vuông tại C ⇒ ∠A+ ∠B = 90o ⇒ ∠B = 90o - ∠A = 90o - 60o = 30o (1)
Ta có: AE là phân giác của ∠CAK ⇒ ∠CAE = ∠ KAE = ∠CAK : 2 = 60o : 2 = 30o (2)
Từ (1) và (2) suy ra: ΔAEB cân tại E ⇒ EB = EA (hai cạnh đáy) (3)
Mà AE > AC (định lí đường vuông góc là đường ngắn nhất) (4)
Từ (3) và (4) suy ra: EB > AC.
Xin lỗi mình không thể chụp ảnh.
Phần 5 thì chỉ có AE song song với CF thôi nhé. Còn BD vuông góc với CF.
1. Xét tam giác ABD và tam giác EBD có:
BAD=BED=90o (gt)
ABD= EBD( BD là tia phân giác)
BD chung ( gt)
=> 2 tam giác = nhau
=> AB=BE ( 2 cạnh tương ứng)
Xét tam giác EBF và tam giác ABC có:
B1=B2(cmt)
A=E (cmt)
BE=BA( cmt)
=> 2 tam giác = nhau
2. Trong tam giác cân, tia phân giác xuất phát từ đỉnh đồng thời là đường trung trực. => BH vuông góc với AE và H là trung điểm của AE( tính chất đường trung trực) (đpcm)
3.Ta có: AD=ED( tam giác ABD= EBD) (1)
Mặt khác, DC> ED( cạnh huyền lớn hơn cạnh góc vuông) (2)
Từ (1)và (2) => DC>AD ( đcpm)
Ý 2:
Có: BA=BE(cmt)
BF=BC( tam giác BFE= BCA)
và BC= BE+EC ; BF= AB+AF
=> AF= EC
=> Tam giác BFC cân
5. Gọi giao của BH và FC là G.
Có tam giác BFC cân( cmt)
=> BG vuông góc với FC ( trong tam giác cân, tia phân giác đồng thời là đường trung tuyến)
Mặt khác,BH vuông góc với AE
=> AE song song FC ( từ vuông gó đến song song)
Nhớ tim và cảm ơn nhé. cảm ơn bạn. Chúc bạn học tốt.
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó; ΔACE=ΔAKE
Suy ra: AC=AK
b: Ta có: ΔACE=ΔAKE
nên EC=EK
mà AC=AK
nên AE là đường trung trực của CK
a: Xét ΔACE vuông tại C và ΔAKE vuông tạiK có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trực của CK
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>K là trung điểm của BC
c: EA=EB
EA>AC
=>EB>AC
a:
a: góc CAE=góc BAE=60/2=30 độ
góc KEB=90-30=60 độ
góc BED=góc AEC=90-30=60 độ
=>góc KEB=góc DEB
=>EB là phân giác của góc KED
góc AEK=góc BEK
=>EK là phân giác của góc BEA
b: Đề sai rồi bạn
TRẢ LỜI LẠI ĐI BN