Tam giác ABC đều. M là điểm bất kỳ nằm trong tam giác, chứng minh tổng các khoảng cách từ M đến các cạnh tâm giác có giá trị không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dòng này tôi viết vì có việc nhé ko phải là tl linh tinh mong thông cảm và cũng ko phải là nội dung bài làm nhé.
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao \(AH\) const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\\ =\dfrac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\\ =\dfrac{1}{2}a\left(DM+ME+MF\right)\\ =\dfrac{1}{2}a.AH\\ \Rightarrow DM+ME+MF=AH\\ \RightarrowĐpcm\)
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao AH const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\)
\(=\frac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\)
\(=\frac{1}{2}a\left(DM+ME+MF\right)\)
\(=\frac{1}{2}a.AH\)
\(=DM+ME+MF=AH\left(đpcm\right)\)
Bài 4:
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
theo đề ta có:
\(MA+MC\ge AC\left(1\right)\) và \(MB+MD\ge BD\left(2\right)\)
=>\(MA+MB+MC+MD\ge AC+BD\) ( không đổi)(3)
Dấu đẳng thức ở (3) xảy ra khi (1) và (2) đồng thời xảy ra dấu đẳng thức khi M đồng thời thuộc AC và BD , tức là M trùng O ( giao điểm của AC và BD) .Vậy O là điểm có tổng các khoảng cách đến các đỉnh của tứ giác là nhỏ nhất hay tổng các khoảng cách từ M đến các cạnh là hằng số.