Cho tam giác \(ABC\) vuông tại \(A\).
a) Tính độ dài cạnh \(BC\) nếu biết \(AB = 7\)cm, \(AC = 24\)cm.
b) Tính độ dài cạnh \(AB\) biết \(AC = 2\)cm, \(BC = \sqrt {13} \)cm.
c) Tính độ dài cạnh \(AC\) nếu biết \(BC = 25\)cm, \(AB = 15\)cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+9^2=3*căn 13cm
AH=6*9/3*căn 13=18/căn 13(cm)
BH=AB^2/BC=12/căn 13(cm)
CH=9^2/3*căn 13=27/căn 13(cm)
b: BC=AB^2/BH=25cm
CH=25-9=16cm
AC=căn 16*25=20cm
c: AB=căn 55^2-44^2=33cm
AH=33*44/55=26,4(cm)
BH=33^2/55=19,8cm
CH=55-19,8=35,2cm
d: CH=căn 40^2-24^2=32cm
BC=AC^2/CH=50cm
AB=căn 50^2-40^2=30cm
BH=50-32=18cm
e: HB=AH^2/HC=7,2cm
BC=7,2+12,8=20cm
AB=căn 7,2*20=12(cm)
AC=căn 12,8*20=16(cm)
f: AH=căn 72*12,5=30(cm)
BC=BH+CH=84,5cm
AB=căn 12,5*84,5=32,5cm
AC=căn 84,5^2-32,5^2=78cm
đổi 500 cm = 5 m
Xét tam giác ABC vuông ta có :
Theo bài ra ta có \(\hept{\begin{cases}AB-AC=1\\AB+AC+BC=12\end{cases}}\Leftrightarrow\hept{\begin{cases}AB-AC=1\\AB+AC=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2AB=8\\AC=AB-1\end{cases}}\Leftrightarrow\hept{\begin{cases}AB=4\\AC=3\end{cases}}\)
Ta có AB + AC = 4 + 3 = 7 m
a) Đặt độ dài cạnh AB là x (\(x > 0\))
Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)
Áp dụng định lý pitago trong tam giác vuông ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}} = \sqrt {2{x^2} + 4x + 4} \)
b) Chu vi của tam giác là \(C = AB + AC + BC\)
\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4} = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)
Theo giả thiết ta có
\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4} = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4} = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)
\( \Rightarrow x = 6\) hoặc \(x = 40\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4} = 22 - 2x\) ta thấy chỉ có \(x = 6\) thỏa mãn phương trình
Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)
f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH+CH=25
hay BH=25-CH(2)
Thay (2) vào (1), ta được:
\(HC\left(25-HC\right)=144\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)
Đổi 12m = 12000cm
Tổng hai cạnh AB và AC là :
12000 - 5000 = 7000(cm)
a, Có : góc BAH = góc BCA ( cùng phụ với góc ABC )
=> Tam giác BHA đồng dạng với tam giác BAC (g.g)
=> BH/BA = BA/BC
=> BH/BC = BA^2
Tk mk nha
Độ dài cạnh AB so với cạnh BC là: \(\dfrac{3}{4}\)x \(\dfrac{4}{5}\) =\(\dfrac{3}{5}\)
Độ dài cạnh AB là: 72:(3+4+5)x3= 18(cm)
Độ dài cạnh AC là: 72:(3+4+5)x4 = 24(cm)
Diện tích tam giác ABC là: 18x24:2 = 216(\(cm^2\))
Đáp số: 216cm2
a: BC=căn 7^2+24^2=25cm
b: AB=căn BC^2-AC^2=3(cm)
c: AC=căn 25^2-15^2=20cm