cho tam giác abc vuông tại a, dường cao ah. vẽ ih vuông góc ab tại h, ah =4,ih - 2.4 . tính bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng định lí Py-ta-go vào tam giác AHB ta được:
HB2+HA2=AB2
\(\Rightarrow\) 32+42=AB2
\(\Rightarrow\) 9+16 =AB2
\(\Rightarrow\)\(\sqrt{AB}\) =25
\(\Rightarrow\)AB =5
b) tam giác AKH có AI vuông góc với KH(gt) , IH=IK(gt)
\(\Rightarrow\) AI vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\) tam giác AKH cân tại A
a: Xét ΔAEH có
AB vừa là đường cao, vừa là trung tuyến
=>ΔAEH cân tại A
=>AE=AH
b: Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
=>ΔAHF cân tại A
=>AH=AF=AE
1: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
hay H là trung điểm của BC
2: BH=CH=BC/2=6cm
=>AH=8cm
3: Xét ΔAHE có
AK là đường cao
AK là đường trung tuyến
Do đó:ΔAHE cân tại A
hay AH=AE(1)
4: Xét ΔADH có
AI là đường cao
AI là đường trung tuyến
Do đó:ΔADH cân tại A
=>AD=AH(2)
Từ (1) và (2)suy ra AD=AE
hay ΔADE cân tại A
a: Xét tứ giác AEID có
góc AEI=góc ADI=góc DAE=90 độ
nên AEID là hình chữ nhật
b: Xét ΔBAC co DI//AC
nên DI/AC=BI/BC=BD/BA=1/2
=>D là trung điểm của AB
Xét ΔBAC có EI//AB
nên EI/AB=CI/CB=CE/CA=1/2
=>E là trung điểm của AC
=>DI//CE và DI=CE
=>DICE là hình bình hành
c: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>DE//IH
ΔHAC vuông tại H
mà HE là trung tuyến
nên HE=AC/2=DI
Xét tứ giác IHDE có
IH//DE
ID=HE
Do đó: IHDE là hình thang cân
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
AI=căn 4^2-2,4^2=3,2cm
AB=4^2/3,2=5cm
BH=căn 5^2-4^2=3cm
BC=AB^2/BH=25/3(cm)