Cho a,b > 0. Hãy đơn giản biểu thức :
\(T=\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b+c\(\ge\) \(2\sqrt{bc}\)
(a+2b)(a+2c) =\(a^2 +2ac+2ab+ 4bc= a^2+2a(b+c) +4bc\)
\(\ge\)\(a^2+4a.\sqrt{bc}+4bc=\left(a+2\sqrt{bc}\right)^2\)
\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}=a+2\sqrt{bc}\)
tương tự: \(\sqrt{\left(b+2a\right)\left(b+2c\right)}=b+2\sqrt{ac}\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}=c+2\sqrt{ab}\)
\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2b\right)\left(c+2a\right)}\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=3\)
khi a=b=c ( a,b,c nguyên dương nên a+b+c>0)
=> \(3\sqrt{a}=\sqrt{3}=>\sqrt{a}=\sqrt{b}=\sqrt{c}=\dfrac{\sqrt{3}}{3}\)
Thay vào M=\(\dfrac{1}{3}\)
Bạn coi lại đề
Cái ngoặc đầu tiên ấy, nhìn rất có vấn đề ở cái \(\sqrt{a}\) và \(\sqrt{2a}\)
B xem lại đề bài thử nhé
bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải