Cho A= 1+2+22+...+2200 . Hãy viết A+1 dưới dạng lũy thừa.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kiểm tra lại đề bài nhé.
c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath
a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
Ta có: \(A=1+2+2^2+...+2^{2015}\)
\(2A=2\cdot\left(1+2+2^2+...+2^{2015}\right)\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=2+2^2+...+2^{2016}-1-2-2^2-...-2^{2015}\)
\(A=2^{2016}-1\)
A không thể biết dưới dạng lũy thừa của 8 được
\(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
\(\Rightarrow A-2=2^{101}-2-2=2^{101}-4\)
Ta có: A=1+2+22+23+24+…+2200
=>2A=2+22+23+24+25+…+2201
=>2A-A=2+22+23+24+25+…+2201-1-2-22-23-24-…-2200
=>A=2201-1
=>A+1=2201
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
A = 1 + 3 + 32 + 33 + ... + 32012
3A = 3 + 32 + 33 + 34 + ... + 32013
3A - A = (3 + 32 + 33 + 34 + ... + 32013) - (1 + 3 + 32 + 33 + ... + 32012)
2A = 32013 - 1
=> 2A + 1 = 32013 - 1 + 1
=> 2A = 32013
\(A=\frac{16^{10}}{8^{12}}=\frac{\left(2^4\right)^{10}}{\left(2^3\right)^{12}}=\frac{2^{40}}{2^{36}}=2^4\)
A = 1610 / 812
=> A = ( 24)10 / ( 23)12
=> A = 240 / 236
=> A = 24
2A = 2+2^2 + 2^3 + ...+2^200 + 2^201
2A - A =( 2+2^2 + 2^3 + ...+2^200 + 2^201)-(1+2+2^2 + 2^3 + ...+2^200 )
=> A = 2^201 - 1
=> A+1 = 2^201
A = 1+2=22+...+2200
2A=2+22+23+...+2201
2A-A=(2+22+23+...+2201)-(1+2=22+...+2200)
A=2201-1
=>A+1=2201-1+1=2201
Vậy A =2201