K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Gọi \(O = AC \cap B{\rm{D}},O' = A'C' \cap B'{\rm{D}}',I = AC' \cap A'C\)

Vì \(AA'\parallel CC',AA' = CC'\) theo tính chất hình hộp nên \(AA'C'C\) là hình bình hành \( \Rightarrow I\) là trung điểm của \(AC'\) và \(A'C\).

Ta có: \({G_1}\) là trọng tâm của tam giác \(BDA' \Rightarrow \frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\)

Tam giác \(AA'C\) có \(\frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\) nên \({G_1}\) là trọng tâm của tam giác \(AA'C\)

Mà \(I\) là trung điểm của \(A'C\) nên \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow A{G_1} = \frac{2}{3}AI\)

Mà \(AI = \frac{1}{2}AC'\)

\( \Rightarrow A{G_1} = \frac{1}{3}AC'\left( 1 \right)\)

Ta có: \({G_2}\) là trọng tâm của tam giác \(B'D'C \Rightarrow \frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\)

Tam giác \(ACC'\) có \(\frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\) nên \({G_2}\) là trọng tâm của tam giác \(ACC'\)

Mà \(I\) là trung điểm của \(AC'\) nên \(\frac{{C'{G_2}}}{{C'I}} = \frac{2}{3} \Rightarrow C'{G_2} = \frac{2}{3}C'I\)

Mà \(C'I = \frac{1}{2}AC'\)

\( \Rightarrow C'{G_2} = \frac{1}{3}AC'\left( 2 \right)\)

Từ (1) và (2) suy ra \({G_1}\) và \({G_2}\) chia đoạn \(AC\) thành ba phần bằng nhau.

 

3 tháng 3 2018

2 tháng 8 2018

 

Đáp án là  C.

                        

 

Ta có:  V O . A , B , C , = 1 2 V O . A , B , C , D , ; V O . A , B , C , D , 1 3 V A B C D . A , B , C , D ,

          V O . A , B , C , = 1 6 V A B C D . A , B , C , D , ⇒ V O . A , B , C , V A B C D . A , B , C , D = 1 6

 

 

7 tháng 2 2017

8 tháng 2 2019

15 tháng 11 2019

15 tháng 6 2021

1 tháng 6 2018

23 tháng 5 2021

Lớp 8 màk dễ như thế á