K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Gọi \(O = AC \cap B{\rm{D}},O' = A'C' \cap B'{\rm{D}}',I = AC' \cap A'C\)

Vì \(AA'\parallel CC',AA' = CC'\) theo tính chất hình hộp nên \(AA'C'C\) là hình bình hành \( \Rightarrow I\) là trung điểm của \(AC'\) và \(A'C\).

Ta có: \({G_1}\) là trọng tâm của tam giác \(BDA' \Rightarrow \frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\)

Tam giác \(AA'C\) có \(\frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\) nên \({G_1}\) là trọng tâm của tam giác \(AA'C\)

Mà \(I\) là trung điểm của \(A'C\) nên \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow A{G_1} = \frac{2}{3}AI\)

Mà \(AI = \frac{1}{2}AC'\)

\( \Rightarrow A{G_1} = \frac{1}{3}AC'\left( 1 \right)\)

Ta có: \({G_2}\) là trọng tâm của tam giác \(B'D'C \Rightarrow \frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\)

Tam giác \(ACC'\) có \(\frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\) nên \({G_2}\) là trọng tâm của tam giác \(ACC'\)

Mà \(I\) là trung điểm của \(AC'\) nên \(\frac{{C'{G_2}}}{{C'I}} = \frac{2}{3} \Rightarrow C'{G_2} = \frac{2}{3}C'I\)

Mà \(C'I = \frac{1}{2}AC'\)

\( \Rightarrow C'{G_2} = \frac{1}{3}AC'\left( 2 \right)\)

Từ (1) và (2) suy ra \({G_1}\) và \({G_2}\) chia đoạn \(AC\) thành ba phần bằng nhau.

 

31 tháng 3 2017

Lời giải:

a) Tứ giác DBB'D' là hình bình hành nên  BD // B'D' . Vì vậy BD // (B'D'C) và BA' // CD' \(\Rightarrow\) BA' // ( B'D'C).

Từ đó suy ra ( BDA') //B'D'C).

b) Gọi {G_{1}}^{}, {G_{2}}^{} là giao điểm của AC' với A'O và CO'.
Do \(G_1=A'O\cap AI\) và A'O và AI là hai đường trung tuyến của tam giác nên \(G_1\) là trọng tâm của tam giác A'AC.
Chứng minh tương tự \(G_2\) là trọng tâm tam giác CAC'.
Suy ra \(\dfrac{AG_1}{AO}=\dfrac{2}{3}\)\(\dfrac{CG_2}{CO}=\dfrac{2}{3}\) nên đường chéo AC'  đi qua trọng tâm của hai tam giác BDA' và B'D'C.

c) Do O và O' lần lượt là trung điểm của AC và A'C' nên \(OC=A'O'\) và OC' // A'O'.
Vì vậy tứ giác OCO'A là hình bình hành và OA'//OC.
Từ đó ta chứng minh được \(G_1\) lần lượt là trung điểm của \(AG_1\) và \(G_2\) là trung điểm của \(G_1C'\).
Do đó: \(AG_1=G_1G_2=G_2C\) (đpcm).
d) \(\left(A'IO\right)=\left(AA'C'C\right)\). Nên thiết diện cần tìm là (AA'C'C).
 

31 tháng 3 2017

d) (A'IO) ≡ (AA'C'C) suy ra thiết diện là AA'C'C

15 tháng 11 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + A’D’ // BC và A’D’ = BC

⇒ A’D’CB là hình bình hành

⇒ A’B // D’C, mà D’C ⊂ (B’D’C) ⇒ A’B // (B’D’C) (1)

+ BB’ // DD’ và BB’ = DD’

⇒ BDD’B’ là hình bình hành

⇒ BD // B’D’, mà B’D’ ⊂ (B’D’C) ⇒ BD // (B’D’C) (2)

A’B ⊂ (BDA’) và BD ⊂ (BDA’); A’B ∩ BD = B (3)

Từ (1), (2), (3) suy ra : (BDA’) // (B’D’C).

b) Gọi O = AC ∩ BD

+ Ta có: O ∈ AC ⊂ (AA’C’C)

⇒ A’O ⊂ (AA’C’C).

Trong (AA’C’C), gọi A’O ∩ AC’ = G1.

G1 ∈ A’O ⊂ (A’BD)

⇒ G1 ∈ AC’ ∩ (BDA’).

+ Trong hình bình hành AA’C’C gọi I = A’C ∩ AC’

⇒ A’I = IC.

⇒ AI là trung tuyến của ΔA’AC

⇒   G 1   =   A ’ O   ∩   A C ’ là giao của hai trung tuyến AI và A’O của ΔA’AC

⇒   G 1  là trọng tâm ΔA’AC

⇒   A ’ G 1   =   2 . A ’ O / 3

⇒   G 1  cũng là trọng tâm ΔA’BD.

Vậy AC' đi qua trọng tâm G 1  của ΔA’BD.

Chứng minh tương tự đối với điểm G 2 .

c) *Vì G 1  là trọng tâm của ΔAA’C nên A G 1 / A I   =   2 / 3 .

Vì I là trung điểm của AC’ nên AI = 1/2.AC’

Từ các kết quả này, ta có : A G 1   =   1 / 3 . A C ’

*Chứng minh tương tự ta có : C ’ G 2   =   1 / 3 . A C ’

Suy ra : A G 1   =   G 1 G 2   =   G 2 C ’   =   1 / 3 . A C ’ .

d) (A’IO) chính là mp (AA’C’C) nên thiết diện cần tìm chính là hình bình hành AA’C’C.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

25 tháng 5 2017

Gọi I, J và K lần lượt là trung điểm của các cạnh BC, CD và BD. Theo tính chất trọng tâm của tam giác ta có :Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

19 tháng 3 2016

A' A B' D' C' B C D M N O' O

Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\)\(\overrightarrow{AB'}=\overrightarrow{b}\)  và   \(\overrightarrow{AD}=\overrightarrow{d}\)

Theo quy tắc hình bình hành ta có :

\(\overrightarrow{AC'}=\overrightarrow{AA'}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{d}\)

Mà \(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{d}=\overrightarrow{AA'}+\overrightarrow{AB}+\overrightarrow{AD}=3\overrightarrow{AM}\)

Suy ra \(\overrightarrow{AC'}=3\overrightarrow{AM}\)

Do đó A, M, C' thẳng hàng

Tương tự cũng có C', N, A thẳng hàng. Suy ra điều cần chứng minh

 

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

17 tháng 11 2023

Điểm G ở đâu vậy bạn?

17 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi G và G' lần lượt là trọng tâm các tam giác PQR và P'Q'R'.

Theo câu a) ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11 G trùng với G'

Vậy hai tam giác PQR và P'Q'R' có cùng trọng tâm.