K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Nguyễn Thành Phát

P = x² + xy + y² - 3x - 3y + 2010 ⇒ 4P = 4(x² + xy + y² - 3x - 3y + 2010) 

= 4x² + 4xy + 4y² - 12x - 12y + 8040 = 4x² + 4xy + y² + 3y² - 12x - 6y - 6y + 3 + 9 + 8028 

= (4x² + 4xy + y²) - (12x + 6y) + 9 + (3y² - 6y + 3) + 8028 

= [ (2x + y)² - 6(2x + y) + 9 ] + 3(y² - 2y + 1) + 8028 

= (2x + y - 3)² + 3(y - 1)² + 8028. Do (2x + y - 3)² ≥ 0 và 3(y - 1)² ≥ 0 

⇒ (2x + y - 3)² + 3(y - 1)² + 8028 ≥ 8028 ⇒ 4P ≥ 8028 ⇒ P ≥ 2007. 

Dấu '=' xảy ra ⇔ 3(y - 1)² = 0 và (2x + y - 3)² = 0 

⇔ y - 1 = 0 và 2x + y - 3 = 0 

⇔ y = 1 và x = (3 - y)/2 = (3 - 1)/2 = 1

Vậy với x = y = 1 thì GTNN của P là 2007.

7 tháng 6 2017

-2x chứ đâu phải -3x đâu bạn

17 tháng 11 2020

Xét biểu thức \(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)=\left(x^2-7x\right)\left(x^2-7x+12\right)\)

Đặt \(x^2-7x+6\rightarrow t\)Khi đó \(A=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)

Dấu "=" xảy ra khi và chỉ khi \(t=0\)hay \(x^2-7x+6=0=>\left(x-6\right)\left(x-1\right)=0=>\orbr{\begin{cases}x=6\\x=1\end{cases}}\)

Vậy GTNN của biểu thức \(A=-36\)đạt được khi \(x=6orx=1\)

17 tháng 11 2020

Xét biểu thức \(B=2x^2+y^2-2xy-2x+3=\left(x^2-2xy+y^2\right)+x^2-2x+1+2\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}< =>\hept{\begin{cases}1-y=0\\x=1\end{cases}}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)

Vậy GTNN của biểu thức \(B=2\)đạt được khi \(x=y=1\)

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

17 tháng 8 2019

A= 2x^2 + y^2 - 2xy -2x+3

A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2

A= (x-y)^2 + (x-1)^2 + 2

(x-y)^2> hoặc = 0 với mọi giá trị của x

(x-1)^2 > hoặc =0 với mọi giá trị của x

=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x

=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2

=> A lớn hơn hoặc bằng 2

=> GTNN của A=2 tại x=y=1

27 tháng 9 2021

\(-x^2-y^2+xy+2x+2y=-\left[x^2-x\left(y+2\right)+\dfrac{1}{4}\left(y+2\right)^2\right]-\left(\dfrac{3}{4}y^2-3y+3\right)+4=-\left(x-\dfrac{1}{2}y-1\right)^2-\left(\dfrac{\sqrt{3}}{2}y-\sqrt{3}\right)^2+4\le4\)

\(max=4\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

27 tháng 9 2021

Thanks

 

5 tháng 7 2017

\(a,A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)

\(=x\left(x-7\right)\left(x-3\right)\left(x-4\right)\)

\(=\left(x^2-7x\right)\left(x^2-7x+12\right)\)

Đặt \(x^2-7x+6=t\)ta có:

\(A=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)

Vậy \(Min_A=-36\)khi \(t=0\Leftrightarrow x^2-7x+6=0\)

\(\Leftrightarrow x^2-6x-x+6=0\)

\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\x-6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)\(b,B=2x^2+y^2-2xy-2x+3\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)

Vậy \(Min_B=2\)khi \(\left[{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

\(c,C=x^2+y^2-3x+3y\)

\(=\left(x^2-3x+\dfrac{9}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)-\dfrac{9}{2}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)

Vậy \(Min_C=\dfrac{-9}{2}\)khi \(\left[{}\begin{matrix}x-\dfrac{3}{2}=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\)

6 tháng 7 2017

nếu bạn tả lời vào lúc sớm vào hôm qua thi tốt quá

mình đi học thêm lúc tối qua thấy giải lun r

19 tháng 9 2018

17 tháng 6 2017

25 tháng 2 2020

Ta có: \(\left|2x+3y\right|\ge0\)\(\forall x,y\inℝ\)\(\left|4y+5z\right|\ge0\)\(\forall y,z\inℝ\)\(\left|xy+yz+zx+110\right|\ge0\)\(\forall x,y,z\inℝ\)

Nên: \(P=\left|2x+3y\right|+\left|4y+5z\right|+\left|xy+yz+xz+110\right|\ge0\)\(\forall x,y,z\inℝ\)

Dấu " = " xảy ra <=> \(\left|2x+3y\right|+\left|4y+5z\right|+\left|xy+yz+xz+110\right|=0\)

Có: \( \left|2x+3y\right|=0\)\(\Leftrightarrow2x+3y=0\)\(\Leftrightarrow2x=-3y\)\(\Leftrightarrow\frac{x}{-3}=\frac{y}{2}\)

\(\left|4y+5z\right|=0\)\(\Leftrightarrow4y+5z=0\)\(\Leftrightarrow4y=-5z\)\(\Leftrightarrow\frac{y}{-5}=\frac{z}{4}\)

\(\left|xy+yz+zx+110\right|=0\)\(\Leftrightarrow xy+yz+zx+110=0\)\(\Leftrightarrow xy+yz+zx=-110\)

Lại có: \(\frac{x}{-3}=\frac{y}{2}\)\(\Rightarrow\frac{x}{15}=\frac{y}{-10}\) (1) ;  \(\frac{y}{-5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{-10}=\frac{z}{8}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{-10}=\frac{z}{8}=k\)=> x = 15k ; y = (-10) . k ; z = 8k

Ta có: \(xy+yz+zx=-110\)\(\Rightarrow15k\left(-10\right)k+8k\left(-10\right)k+8k.15k=-110\)

\(\Rightarrow k^2\left(-150\right)+k^2\left(-80\right)+120k^2=-110\)

\(\Rightarrow k^2\left(-110\right)=-110\)\(\Rightarrow k^2=1\)\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

+) Th1: k = 1   

Có: x = 15k = 15 . 1 = 15

y = (-10) . k = (-10) . 1 = -10

z = 8k = 8 . 1 = 8

+) Th2: k = -1

Có: x = 15k = 15 . (-1) = -15 

y = (-10) . k = (-10) . (-1) = 10

z = 8k = 8 . (-1) = -8

Vậy GTNN P = 0 <=> (x; y; z) = (15; -10; 8) hoặc (x; y; z) = (-15; 10; -8)