K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017
  1. \(\left(2x+5\right)^2=\left(x+2\right)^2\Leftrightarrow\left(2x+5+x+2\right)\left(2x+5-x-2\right)=0\)\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{3}\\x=-3\end{cases}}\)
  2. \(x^2-5x+6=0\Leftrightarrow x^2-6x+x-6=0\Leftrightarrow x\left(x-6\right)+\left(x-6\right)=0\)\(\left(x+1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-1\end{cases}}\)
  3. \(2x^3+6x^2=x^2+3x\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)\(\Leftrightarrow\left(x+3\right)\left(2x^2-x\right)=0\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\Leftrightarrow\)\(x=0\)hoặc \(x=\frac{1}{2}\)hoặc \(x=-3\)

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

a: (2x+1)(3-x)(4-2x)=0

=>(2x+1)(x-3)(x-2)=0

hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)

b: 2x(x-3)+5(x-3)=0

=>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

c: =>(x-2)(x+2)+(x-2)(2x-3)=0

=>(x-2)(x+2+2x-3)=0

=>(x-2)(3x-1)=0

=>x=2 hoặc x=1/3

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

e: =>(2x+5+x+2)(2x+5-x-2)=0

=>(3x+7)(x+3)=0

=>x=-7/3 hoặc x=-3

f: \(\Leftrightarrow2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)

11 tháng 10 2021

a: ta có: \(x^2+3x-\left(2x+6\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

b: Ta có: \(5x+20-x^2-4x=0\)

\(\Leftrightarrow\left(x+4\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)

1) Ta có: \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}

22 tháng 5 2021

\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)

\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)

\(< =>\left(1-x\right)\left(8x-4\right)=0\)

\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

22 tháng 5 2021

\(\left(x-2\right)\left(x+1\right)=x^2-4\)

\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)

\(< =>-1\left(x-2\right)=0\)

\(< =>2-x=0< =>x=2\)

1 tháng 3 2023

`2x^3 +6x^2 =x^2 +3x`

`<=> 2x^3 +6x^2 -x^2 -3x=0`

`<=> 2x^3 +5x^2 -3x=0`

`<=> x(2x^2 +5x-3)=0`

`<=> x(2x^2 +6x-x-3)=0`

`<=> x[2x(x+3)-(x+3)]=0`

`<=> x(2x-1)(x+3)=0`

\(< =>\left[{}\begin{matrix}x=0\\2x-1=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

b)

`(2+x)^2 -(2x-5)^2=0`

`<=> (2+x-2x+5)(2+x+2x-5)=0`

`<=> (-x+7)(3x-3)=0`

\(< =>\left[{}\begin{matrix}-x+7=0\\3x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

1 tháng 3 2023

`a) 2x^3 + 6x^2 = x^2 + 3x`

`=> 2x^3 + 6x^2 - x^2 - 3x = 0`

`=> 2x^3 + 5x^2 - 3x = 0`

`=> x(2x^2 + 5x - 3) = 0`

`=> x (2x^2 + 6x - x - 3) = 0`

`=> x [(2x^2 + 6x) - (x+3)] = 0`

`=> x [2x(x+3) - (x+3)] = 0`

`=> x (2x - 1)(x+3) = 0`

`=> x = 0` hoặc `2x - 1 = 0` hoặc `x + 3 = 0`

`=> x = 0` hoặc `x = 1/2` hoặc `x = -3`

`b) (2+x)^2 - (2x-5)^2 = 0`

`=> (2+x+2x-5)(2+x-2x+5) = 0`

`=> (3x - 3)(7-x) = 0`

`=> 3x - 3 = 0` hoặc `7 - x = 0`

`=> x = 1` hoặc `x = 7`

 

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:A.-2x3 - 6x2 – 8x          B. 2x3 -6x2 – 8x      C. -2x3 - 6x2 + 8x         D. -2x3 + 3x2 -4Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:A. (x+y+3z)(x+y–3z)  B. (x-y+3z)(x+y–3z) C.(x - y +3z)(x - y – 3z)D. (x + y +3z)(x -y – 3z)Câu 8: Phân tích đa thức 27x3 – thành nhân tử ta...
Đọc tiếp

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:

A.-2x3 - 6x2 – 8x          B. 2x3 -6x2 – 8x      C. -2x3 - 6x2 + 8x         D. -2x3 + 3x2 -4

Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:

A. (x+y+3z)(x+y–3z)  

B. (x-y+3z)(x+y–3z) 

C.(x - y +3z)(x - y – 3z)

D. (x + y +3z)(x -y – 3z)

Câu 8: Phân tích đa thức 27x3 – thành nhân tử ta được:

A.(3x+)(9x2-x+)  

B.(3x–)(9x2+x+) 

C.(27x–)(9x2+x+) 

 D.(27x+)(9x2+x+)  

Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:

A. (x - 3)( x + 4 )         B. (x + 3)( x + 4 )         C.(x + 5)( x + 2 )               D. (x -5)( x + 2 )

Câu 10:  Giá trị của biểu thức  (x2 + 4x + 4) tại x = - 2 là:

A. 4                            B. -2                          C. 0                           D. -8                 

2
23 tháng 11 2021

Câu 6:C

Câu 7:A

Câu 9:B

Câu 10:A

23 tháng 11 2021

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:

A.-2x- 6x– 8x          B. 2x-6x– 8x      C. -2x- 6x+ 8x         D. -2x+ 3x-4

Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:

A. (x+y+3z)(x+y–3z)  

B. (x-y+3z)(x+y–3z) 

C.(x - y +3z)(x - y – 3z)

D. (x + y +3z)(x -y – 3z)

Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:

A. (x - 3)( x + 4 )         B. (x + 3)( x + 4 )         C.(x + 5)( x + 2 )               D. (x -5)( x + 2 )

Câu 10:  Giá trị của biểu thức  (x2 + 4x + 4) tại x = - 2 là:

A. 4                            B. -2                          C. 0                           D. -8

Mấy câu còn lại bị lỗi r nhé