Cho (P ): y=x2 và (d): y=2x+m
a, Tìm m để (d) tiếp xúc (p)
b, Tìm tọa độ tiếp điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
b, \(d\left(I;\Delta\right)=R\Leftrightarrow\dfrac{\left|-2+6+m\right|}{\sqrt{13}}=\sqrt{13}\)
\(\Rightarrow\left[{}\begin{matrix}m=9\\m=-17\end{matrix}\right.\)
c, Dễ tìm được tọa độ A, B: \(\left\{{}\begin{matrix}A=\left(-3,-1\right)\\B=\left(2,0\right)\end{matrix}\right.\)
Phương trình tiếp tuyến tại A có dạng: \(\Delta_1:ax+by+3a+b=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I,\Delta_1\right)=\dfrac{\left|-a+2b+3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{13}\)
\(\Leftrightarrow\left(2a+3b\right)^2=13a^2+13b^2\)
\(\Leftrightarrow4a^2+9b^2+12ab=13a^2+13b^2\)
\(\Leftrightarrow9a^2+4b^2-12ab=0\)
\(\Leftrightarrow9a^2+4b^2-12ab=0\)
\(\Leftrightarrow3a=2b\)
\(\Rightarrow\Delta_1:2x+3y+9=0\)
Tương tự tiếp tuyến tại B: \(\Delta_2:3x-2y-6=0\)
Chắc hiếm người tl câu của bạn lắm!!
-----
gọi parabol có đồ thì hàm số là : y = ax² + bx + c (P)
đường thẳng có đồ thị hàm số là : y = a'x + b' (d)
hoành độ giao điểm của (P) và (d) là nghiệm của pt : ax² + bx + c = a'x + b'
=> ax² + bx - a'x + c - b' = 0
=> ax² + (b - a')x + c - b' = 0
bạn tính ▲ của pt bậc 2 này ra
nếu ▲ < 0 => (d) không cắt (P)
nếu ▲ = 0 => (d) tiếp xúc (P)
nếu ▲ > 0 => (d) cắt (P) tại 2 điểm phân biệt
trích từ: </https://vn.answers.yahoo.com/question/index?qid=20081213224509AALYCsc>
-----------
a. Hoành độ giao điểm:
x^2 = 2x+m
=> m^2 - 2x - m = 0 (a = 1; b= -2; c= -m)
▲= b^2 - 4ac = 4 - 4*(-m) = 4m + 4
Để (d) tiếp xúc với (p) thì ▲= 0 -> 4m+4=0
-> m = -1
b. ▲= 0 nên phương trình có nghiệm kép: x1=x2= -b/a = 2
x= 2 -> y = x^2 = 2^2 =4
Vậy tọa độ tiếp điểm là A(2;4)
Bạn ơi mình có nhầm lẫn xíu nhé ở câu b là x1=x1= -b/2a = 2/2 = 1
x=1 => y=x^2= 1^2 = 1
Vậy tọa độ tiếp điểm là A(1;1)
Quên công thức :) Sorry