Cho A = 1/101 + 1/102 + 1/103 + ... + 1/200 . CMR : a) A > 7/12
b) A > 5/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 𝐶=1101+1102+1103+...+1200C=1011+1021+1031+...+2001
=(1101+1102+...+1120)+(1121+1122+1123+...+1150)+(1151+1152+1153+...+1180)+(1181+1182+1183+...+1200)=(1011+1021+...+1201)+(1211+1221+1231+...+1501)+(1511+1521+1531+...+1801)+(1811+1821+1831+...+2001)
⇔𝐶>20⋅1120+30⋅1150+30⋅1180+20⋅1200⇔C>20⋅1201+30⋅1501+30⋅1801+20⋅2001
⇔𝐶>16+15+16+110=1930=76120⇔C>61+51+61+101=3019=12076
⇔𝐶>75120=58⇔C>12075=85
hay 𝐶>58C>85(đpcm)
TỰ thay C=a nhA
a. ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
b, A =(1/101+1/102+....+1/150)+(1/151+1/152+.....+1/200)
A>1/150.50+1/200.50=1/3+1/4=7/12
b tách A thành bốn nhóm rồi cũng làm như trên,ta có
A>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8
=107/210+1/8>1/2+1/8=5/8
Ta có :
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(A=\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}\right)\)
\(A>\left(\frac{1}{150}+\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)
\(A>50.\frac{1}{150}+50\frac{1}{200}\)
\(A>\frac{50}{150}+\frac{50}{200}\)
\(A>\frac{1}{3}+\frac{1}{4}\)
\(A>\frac{7}{12}\)
Vậy \(A>\frac{7}{12}\)
Chúc bạn học tốt ~
Ta có:\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100\)
hay A>\(\frac{7}{12}\)
A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100\)
hay A>\(\frac{5}{8}\)
mình ko biết có đúng ko bạn xem kĩ nhé
Ta có : \(\frac{1}{101}\) > \(\frac{1}{150}\)
\(\frac{1}{102}\) > \(\frac{1}{150}\)
.....................................................
\(\frac{1}{149}\) > \(\frac{1}{150}\)
=> \(\frac{1}{101}\) + \(\frac{1}{102}\) + .......... + \(\frac{1}{150}\) > \(\frac{1}{150}\) + \(\frac{1}{150}\) + .......... + \(\frac{1}{150}\)( có 50 p/s ) = \(\frac{1}{150}\) . 50 = \(\frac{1}{3}\)(1)
Ta lại có : \(\frac{1}{151}\) > \(\frac{1}{200}\)
\(\frac{1}{152}\) > \(\frac{1}{200}\)
............................................
\(\frac{1}{199}\)> \(\frac{1}{200}\)
=> \(\frac{1}{151}\) + \(\frac{1}{152}\) + .................. + \(\frac{1}{200}\) > \(\frac{1}{200}\)+ \(\frac{1}{200}\) + ...................+ \(\frac{1}{200}\)(có 50 p/ )=\(\frac{1}{200}\) . 50 = \(\frac{1}{4}\)(2)
Từ (1) và (2)
=> \(\frac{1}{101}\)+ \(\frac{1}{102}\) + \(\frac{1}{103}\) + ...................+ \(\frac{1}{200}\)> \(\frac{1}{3}\) + \(\frac{1}{4}\) = \(\frac{4}{12}\) + \(\frac{3}{12}\) = \(\frac{7}{12}\)
Vậy A > \(\frac{7}{12}\)
sao dễ vậy
a) Ta chọn biểu thức B làm trung gian sao cho A > B, còn B \(\ge\)\(\frac{7}{12}\).
Tách A thành 2 nhóm, mỗi nhóm 50 phân số, rồi thay mỗi phân số trong từng nhóm bằng phân số nhỏ nhất trong nhóm ấy, ta được :
A = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(>\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
b) Tách A thành bốn nhóm rồi cũng làm như trên, ta được :
A > \(\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\frac{1}{8}=\frac{107}{210}+\frac{1}{8}>\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)