K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

A C E F B M N

Hình Vẽ Đấy

28 tháng 5 2017

còn bài nào toán hình k 

28 tháng 5 2017

Tự Vẽ Hình Nhé :

Theo tính chất đường phân giác ngoài của một góc luôn vuông góc với đường phân giác ngoài của góc đó 

=> \(\widehat{MBN}=\widehat{MCN}=90^0\)nên hai góc \(\widehat{MBN}\)và \(\widehat{MCN}\)cùng nhìn MN dưới một góc bằng 90 độ. vậy Tứ giác MBNC nội tiếp đường tròn đường kính MN 

28 tháng 5 2017

mk ko có bít làm sao jờ ?

?????????????????

Cho tam giác ABC có các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N. Chứng minh tứ giác BMNC là tứ giác nội tiếp 

Vẽ hình ra luôn

  • mk ko bít
  • ????
  • tự làm nhé ^_^ !
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\)

nên BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{HDC}+\widehat{HEC}=180^0\)

Do đó: CDHE là tứ giác nội tiếp

5 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: BS ⊥ BE (tính chất đường phân giác của hai góc kề bù)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Và CS ⊥ CE (tính chất đường phân giác của hai góc kề bù)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác BSCE ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy tứ giác BSCE nội tiếp đường tròn

a: góc AFH+góc AEH=180 độ

=>AEHF nội tiếp

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc IBF=góc IEC

Xét ΔIBF và ΔIEC có

góc IBF=góc IEC

góc I chung

=>ΔIBF đồng dạng với ΔIEC

=>IB/IE=IF/IC

=>IB*IC=IE*IF

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc CDH+góc CEH=90+90=180 độ

=>CDHE nội tiếp

b: góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có

góc BEF=góc DEH

góc BFE=góc DHE

=>ΔBFE đồng dạng với ΔDHE

19 tháng 3 2021
  

a, 

Tứ giác ADHK có ˆADH+ˆAKH=90+90=180oADH^+AKH^=90+90=180o

⇒⇒ ADHK là tứ giác nội tiếp.

b,

BM phân giác ˆABCABC^

⇒ˆABM=ˆMBC⇒ABM^=MBC^

⇒⌢AM=⌢MC⇒AM⌢=MC⌢ (2 góc nội tiếp chắn 2 cung)  

⇒ˆAOM=ˆMOC⇒AOM^=MOC^ (2 góc ở tâm cũng chắn 2 cung đó)

⇒⇒ OM phân giác ˆAOCAOC^ 

image

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{CDH}+\widehat{CEH}=180^0\)

Do đó: CDHE là tứ giác nội tiếp

b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)

\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)

mà \(\widehat{BAD}=\widehat{FCB}\)

nên \(\widehat{FEB}=\widehat{BED}\)

hay EB là tia phân giác góc FED