K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2023

ta có 11 = 11 x1 ( vì nó ko có số nào mafnos chia hết ngoài 2 số này )

 nếu x - 1 = 1 thì y + 2 =11 

=> x = 2 ; y = 9 

nếu x - 1 = 11 thì y + 2 =1

=> x = 12 ; y = -1

vậy x =( 2 , 12 ) ; y = ( 9 , -1 )

(x-1)(y+2)=11

=>(x-1;y+2) thuộc {(1;11); (11;1); (-1;-11); (-11;-1)}

=>(x,y) thuộc {(2;9); (12;-1); (0;-13); (-10;-3)}

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

27 tháng 9 2018

\(\frac{2}{x}=\frac{3}{y}\)

\(\Rightarrow3x=2y\)

\(\Rightarrow x=\frac{2y}{3}\)

Thay x vào xy ( đề bài ) ta có :

\(\frac{2y}{3}\cdot y=96\)

\(\Rightarrow\frac{2y^2}{3}=96\)

\(\Rightarrow2y^2=288\)

\(\Rightarrow y^2=144\)

\(\Rightarrow y=\left\{\pm12\right\}\)

\(\Rightarrow\orbr{\begin{cases}y=12\Rightarrow x=8\\y=-12\Rightarrow-8\end{cases}}\)

Vậy các cặp ( x; y ) thỏa mãn là ( 8; 12 ) và ( -8; -12 )

27 tháng 9 2018

vao nink này nha

a: =>x^2+10xy+25y^2+y^2-14y+49=0

=>(x+5y)^2+(y-7)^2=0

=>y-7=0 và x+5y=0

=>y=7 và x=-5y=-35

b: A=(x-1)(x+6)(x+2)(x+3)+2044

=(x^2+5x-6)(x^2+5x+6)+2044

=(x^2+5x)^2-36+2044

=(x^2+5x)^2+2008>=2008

Dấu = xảy ra khi x=0 hoặc x=-5

19 tháng 2 2017

1)x=-3;3

y=-5;5

8 tháng 11 2016

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

8 tháng 11 2016

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

Bằng 20/15 nhá bạn

23 tháng 2 2019

\(\frac{x-4}{y-3}=\frac{4}{3}\)

\(\Rightarrow\left(x-4\right).3=\left(y-3\right).4\)

       \(3x-12=4y-12\)

\(\Leftrightarrow3x=4y\)

\(\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{x-y}{\frac{1}{3}-\frac{1}{4}}=\frac{5}{\frac{1}{12}}=5.12=60\)

\(\Rightarrow\hept{\begin{cases}x=60.\frac{1}{3}=20\\y=60.\frac{1}{4}=15\end{cases}}\)

Vậy x = 20 ; y = 15

5 tháng 11

  Bài 1:  \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)

    \(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))

     (\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)

        (\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)

        (\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2

        \(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\) 

TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\) 

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\) 

TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)  

    Vậy (\(x;y\)  ) = (- \(\dfrac{1}{2}\)\(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))

       

                   

         

 

       

        

 

           

 

9 tháng 8 2017

số cặp x,y là : 

N :2 = ??

đ/s:.......

số cặp x,y,z là :

N* :3=?

9 tháng 8 2017

sai rồi

26 tháng 10 2017

\(2^x+1=3^y\)

\(\Rightarrow\hept{\begin{cases}2^1+1=3^1\\2^3+1=3^2\end{cases}}\Rightarrow\hept{\begin{cases}x=1;y=1\\x=3;y=2\end{cases}}\)

26 tháng 10 2017

Despacito làm chuẩn không cần chỉnh

Làm ơn cho 1 L_I_K_E!!!!