Cho a,b,c \(\ge\)0 , a+b+c=1.
Cm : \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)\(\ge\)7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\Rightarrow a\le1\Leftrightarrow a^2\le a\)
\(VT=\sqrt{4a+4.1+1}+\sqrt{4b+4.1+1}+\sqrt{4c+4.1+1}\ge\sqrt{4a^2+4a+1}+\sqrt{4b^2+4b+1}+\sqrt{4c^2+4c+1}\)
\(=2a+1+2b+1+2c+1=7\) .
Vậy đẳng thức được chứng minh . Dấu \("="\Leftrightarrow a=1;b=0;c=0\) và hoán vị
À sorry mình nhầm .
\(VT=\sum\sqrt{4a+4+1}\ge\sum\sqrt{a^2+4a+4}=a+2+b+2+c+2=7\)
Đặt \(\left(\sqrt{5a+4};\sqrt{5b+4};\sqrt{5c+4}\right)=\left(x;y;z\right)\) \(\left(2\le x;y;z\le3\right)\)
\(\Rightarrow x^2+y^2+z^2=5\left(a+b+c\right)+12=5+12=17\)
Ta lại có: \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)\(\Rightarrow x^2-5x+6\le0\)
T/tự: \(y^2-5y+6\le0;z^2-5z+6\le0\)
Nên: \(\left(x^2-5x+6\right)+\left(y^2-5y+6\right)+\left(z^2-5z+6\right)\le0\)
\(\Rightarrow5\left(x+y+z\right)\ge x^2+y^2+z^2+18=17+18=35\)
\(\Rightarrow x+y+z\ge7\)
Đẳng thức xảy ra khi: \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị
Vậy MinT=7 đạt được khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Tìm trước khi hỏi :
Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học
Witch Rose
Vì a,b,ca,b,c không âm và a+b+c=1a+b+c=1 nên 2≤t=√5c+4≤32≤t=5c+4≤3
Ta có:a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16
⇔(5a+4)(5b+4)≥4(5a+5b+4)⇔(5a+4)(5b+4)≥4(5a+5b+4)
⇔(√5a+4+√5b+4)2≥(2+√5a+5b+4)2⇔(5a+4+5b+4)2≥(2+5a+5b+4)2
⇔√5a+4+√5b+4≥2+√9−5c=2+√13
Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).
Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)
\(\Rightarrow5a+4\ge\left(a+2\right)^2\)
\(\Rightarrow\sqrt{5a+4}\ge a+2\).
Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).
Cộng vế với vế ta có \(T\ge a+b+c+6=7\).
Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.
Vậy Min T = 7 khi a = 1; b = c = 0.
Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)
Do $0\leq a \leq 1$ nên $a\ge a^2.$
Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)
Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)
rồi đi chọn $m,n$ theo điểm rơi.
Không biết còn cách nào khác không nhỉ?
nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]