Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt bunhiacopxki có:
\(\left(\sqrt{5a+1}+\sqrt{5b+1}+\sqrt{5c+1}\right)^2\le\left(5a+1+5b+1+5c+1\right)\left(1^2+1^2+1^2\right)=3\cdot\left[5\left(a+b+c\right)+3\right]=3\cdot8=24\)
\(\Leftrightarrow\sqrt{5a+1}+\sqrt{5b+1}+\sqrt{5c+1}\le\sqrt{24}=2\sqrt{6}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)
Và
\(VT^2=\left(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\right)^2\)
\(\le\left(5a+4+5b+4+5c+4\right)\left(1+1+1\right)\)
\(\Leftrightarrow VT^2\le15\left(a+b+c\right)+36\)
Mà \(3\le a+b+c\left(cmt\right)\)
\(\Rightarrow VT^2\le15\left(a+b+c\right)+12\left(a+b+c\right)=27\left(a+b+c\right)\)
\(\Rightarrow VT\le3\sqrt{3\left(a+b+c\right)}\)
Ta có đpcm
Dấu " = " xảy ra khi \(a=b=c=1\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Ta có: \(\hept{\begin{cases}a;b;c\ge0\\a+b+c=1\end{cases}}\Rightarrow0\le a;b;c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)
\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)
\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=a+2+b+2+c+2=7\)
\("="\Leftrightarrow a;b;c\) là hoán vị của 0;0;1
Đặt \(\left(\sqrt{5a+4};\sqrt{5b+4};\sqrt{5c+4}\right)=\left(x;y;z\right)\) \(\left(2\le x;y;z\le3\right)\)
\(\Rightarrow x^2+y^2+z^2=5\left(a+b+c\right)+12=5+12=17\)
Ta lại có: \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)\(\Rightarrow x^2-5x+6\le0\)
T/tự: \(y^2-5y+6\le0;z^2-5z+6\le0\)
Nên: \(\left(x^2-5x+6\right)+\left(y^2-5y+6\right)+\left(z^2-5z+6\right)\le0\)
\(\Rightarrow5\left(x+y+z\right)\ge x^2+y^2+z^2+18=17+18=35\)
\(\Rightarrow x+y+z\ge7\)
Đẳng thức xảy ra khi: \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị
Vậy MinT=7 đạt được khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
ban dung bdt nay di :voi a,b,c ko am ta co
\(\sqrt{a+b+c}=< \sqrt{a}+\sqrt{b}+\sqrt{c}=< \sqrt{3\left(a+b+c\right)}\)
xay ra dau bang khi a=b=c
\(S\ge3\frac{1}{\sqrt[6]{\left(a+2b+5c\right)\left(b+2c+5a\right)\left(c+2a+5b\right)}}.\)
\(S\ge\frac{3.4}{\sqrt[6]{\left(a+2b+5c\right)\left(b+2c+5a\right)\left(c+2a+5b\right).16.16.16}}\)
\(S\ge\frac{12}{\frac{a+2b+5c+b+2c+5a+c+2a+5b+16+16+16}{6}}\)
\(S\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=2\)
Tìm trước khi hỏi :
Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học
Witch Rose
Vì a,b,ca,b,c không âm và a+b+c=1a+b+c=1 nên 2≤t=√5c+4≤32≤t=5c+4≤3
Ta có:a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16
⇔(5a+4)(5b+4)≥4(5a+5b+4)⇔(5a+4)(5b+4)≥4(5a+5b+4)
⇔(√5a+4+√5b+4)2≥(2+√5a+5b+4)2⇔(5a+4+5b+4)2≥(2+5a+5b+4)2
⇔√5a+4+√5b+4≥2+√9−5c=2+√13