Cho hệ phương trình \(\hept{\begin{cases}2x+y=2m-1\\x-y=m-5\end{cases}}\)
Tìm m để hệ phương trình có nghiệm(x,y)thỏa mãn điều kiện \(\frac{1}{x+y}+\frac{1}{x+2}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với m =1 suy ra :
\(\hept{\begin{cases}2x-y=1\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2x-1\\-x+2x-1=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2.3-1=5\\x=3\end{cases}}\)
b ) Để hệ có nghiệm x+2y=3
\(\Rightarrow\hept{\begin{cases}x+2y=3\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2y\\-\left(3-2y\right)+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2.\frac{5}{3}=-\frac{1}{3}\\y=\frac{5}{3}\end{cases}}\)
\(\Rightarrow2.\left(-\frac{1}{3}\right)-\frac{5}{3}=2m-1\Rightarrow m=-\frac{2}{3}\)
a) \(\hept{\begin{cases}2x+my=5\\3x-y=0\end{cases}\left(1\right)}\)
Thay m=0 vào (1) \(\Rightarrow\hept{\begin{cases}2x=5\\3x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}\cdot3=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{15}{2}\end{cases}}}\)
Theo đề ta có hệ :
\(\hept{\begin{cases}2x-y=3\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{3}\end{cases}}\)
=> \(\left(2m-1\right)\frac{4}{3}-\frac{1}{3}=-0,5\)
<=> m = 7/16
Hệ pt có nghiệm thỏa mãn x+y = 1 => m = 1
Khi đó : hệ pt <=> x+y = 1
2x-y = 0
<=> x+y=1
x+y+2x-y = 1
<=> x+y=1
3x=1
<=> x=1/3
y=2/3
Vậy .............
Tk mk nha
Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)
Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)
Ta có: (2m - 1)x + (m + 1)y = m
Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m
<=> \(\frac{18m-9}{m}-4m-4-m=0\)
<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)
=> -5m2 + 14m - 9 = 0
<=> 5m2 - 14m + 9 = 0
<=>5m2 - 5m - 9m + 9 = 0
<=> 5m(m - 1) - 9(m - 1) = 0
<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)
Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài
\(\hept{\begin{cases}2x+y=2m-1\\x-y=m-5\end{cases}}\)
Cộng vế theo vế ta được: \(2x+x=2m+m-1-5\Rightarrow3x=3m-4\Rightarrow x=\frac{3m-4}{3}\)
Thay x vào pt x - y = m - 5 ta suy ra \(y=\frac{11}{3}\)
Thay x, y vào pt \(\frac{1}{x+y}+\frac{1}{x+2}=0\) ta được:
\(\frac{1}{\frac{3m-4}{3}+\frac{11}{3}}+\frac{1}{\frac{3m-4}{3}+2}=0\)
\(\Rightarrow\frac{1}{\frac{3m+7}{3}}+\frac{1}{\frac{3m+2}{3}}=0\)
\(\Rightarrow\frac{3}{3m+7}+\frac{3}{3m+2}=0\)
\(\Rightarrow3\left(3m+2\right)+3\left(3m+7\right)=0\)
\(\Rightarrow m=-\frac{3}{2}\)
Vậy m = -3/2
hết lượt đúng r,,,,hì hì