tìm x,y thuộc Z thỏa mãn 3xy-5=x2+2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ra,ta có:
\(3xy-2y=x^2+5\)
\(\Rightarrow y\left(3x-2\right)=x^2+5\left(1\right)\)
Do x,y nguyên nên \(x^2+5⋮3x-2\)
\(\Rightarrow9\left(x^2+5\right)⋮3x-2\)
\(\Rightarrow9x^2+45⋮3x-2\)
\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)
\(\Rightarrow3x\left(3x-2\right)+2\left(3x-2\right)+49⋮3x-2\)
\(\Rightarrow49⋮3x-2\)
\(\Rightarrow3x-2\in\left\{49;7;1;-7;-1;-49\right\}\)
\(\Rightarrow3x\in\left\{51;9;3;-5;1;-47\right\}\)
\(\Rightarrow x\in\left\{1;3;7\right\}\)vì \(x\in Z\)
Với \(x=1\)thay vào \(\left(1\right)\),ta được y=6
Tương tự thì với \(x=3\Rightarrow y=2;x=7\Rightarrow y=6\)
Vậy các cặp số \(\left(x;y\right)\)thỏa mãn điều kiện trên là:\(\left(1;6\right);\left(3;2\right);\left(7;6\right)\)
P/S:bài giải dài,nếu không có gì sai sót quá nghiêm trọng thì mong mọi người bỏ qua cho.
Ta có:3xy-5=x\(^2\) +2y
⇒3xy-2y=x \(^2\)+5 (1)
Vì x,y là số nguyên nên:x\(^2\) +5 chia hết cho 3x-2
=>9(x^2+5) chia hết cho 3x-2 9x^2+45 chia hết cho3y-2
=>9x^2-6x+6x-4+49 chia hêt cho 3x-2
=>3x(3x-2)+2(3x-2)+49 chia hết cho 3x-2
=>46 chia hết cho 3x-2
=>3x-2 ∈ (49;-49;7;-7;1;-1)
<=>3x ∈ (51;-47;9;-5;3;1)
<=>x ∈ (1;3;17)
Thay x lần lượt vào (1) ta được y=6 hoặc y=2
Vậy y=2 hoặc y=2
p/s : kham khảo
Answer:
\(3xy-2y=x^2+5\)
\(\Rightarrow y\left(3x-2\right)=x^2+5\) (1)
Mà x và y nguyên \(\Rightarrow x^2+5⋮3x-2\)
\(\Rightarrow9\left(x^2+5\right)⋮3x-2\)
\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)
\(\Rightarrow49⋮3x-2\)
\(\Rightarrow3x-2\in\left\{\pm49;\pm7;\pm1\right\}\)
\(\Rightarrow3x\in\left\{51;9;3;-5;1;-47\right\}\)
\(\Rightarrow x\in\left\{1;3;7\right\}\)
Trường hợp 1: Với \(x=1\) ta thay vào (1)
\(\Rightarrow y=6\)
Trường hợp 2: Với \(x=3\) ta thay vào (1)
\(\Rightarrow y=2\)
Trường hợp 3: Với \(x=7\)ta thay vào (1)
\(\Rightarrow y=6\)