K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔDEC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDEC
b: góc EDB+góc EAB=180 độ

=>EABD nội tiếp

góc DEB=góc DAB

góc DBE=góc DAC

=>góc DEB=góc DBE

=>DB=DE

a) Ta có: ΔDEC vuông tại D(ED\(\perp\)BC tại D)

nên \(\widehat{DEC}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{DEC}=\widehat{ABC}\)

 

19 tháng 3 2021

Bạn ơi bạn giúp mik câu b lun ik

3 tháng 5 2017

A B C D E K H M

a. Có thể em thiếu giả thiết đọ lớn của các canhk AB, AC. Nếu có, ta dùng định lý Pi-ta-go để tính độ dài BC.

b. Ta thấy ngay tam giác ABE bằng tam giác DBE (cạnh huyền - cạnh góc vuông)

Từ đó suy ra \(\widehat{ABE}=\widehat{DBE}\) hay BE là phân giác góc ABC.

c. Ta thấy  tam giác ABC bằng tam giác DBK (cạnh góc vuông - góc nhọn kề)

nên AC = DK.

d. Do tam giác ABE bằng tam giác DBE nên \(\widehat{AEB}=\widehat{DEB}\)

Lại có AH // KD (Cùng vuông góc BC) nên \(\widehat{AME}=\widehat{MED}\) (so le trong)

Vậy \(\widehat{AME}=\widehat{AEM}\)

Vậy tam giác AME cân tại A.

a) Ta có: \(BC^2=13^2=169\)

\(AB^2+AC^2=5^2+12^2=169\)

Do đó: \(BC^2=AB^2+AC^2\)(=169)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE
=>ΔDAE cân tại D

=>góc DAE=góc DEA

c: BA=BE

DA=DE

=>BD là trung trực của AE