Tính giá trị lớn nhất của biểu thức A= \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2
=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)
thay vào A=\(\dfrac{-2}{3}\)
b)
A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)
Dấu bằng xẩy ra\(\Leftrightarrow\) x=0
chỗ đó cho thêm x-1 nha
đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0
a: |x|+2003>=2003
=>A<=2022/2003
Dấu = xảy ra khi x=0
b: |x|+1>=1
=>(|x|+1)^10>=1
=>B>=2010
Dấu = xảy ra khi x=0
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a) Ta có:
\(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\) Q có nghĩa khi:
\(\left(1-3x\right)\left(x+\dfrac{1}{2}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x\ge0\\x+\dfrac{1}{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-3x\le0\\x+\dfrac{1}{2}\le\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le1\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge1\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{3}\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{3}\)
b) Ta có: \(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)
\(Q=\sqrt{x+\dfrac{1}{2}-3x^2-\dfrac{3}{2}x}\)
\(Q=\sqrt{-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)}\)
\(Q=\sqrt{-3\left(x^2+\dfrac{1}{6}x-\dfrac{1}{6}\right)}\)
\(Q=\sqrt{-3\left(x^2+2\cdot\dfrac{1}{12}\cdot x+\dfrac{1}{144}-\dfrac{25}{144}\right)}\)
\(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\)
Mà: \(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\le\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\)
Dấu "=" xảy ra khi:
\(\Leftrightarrow-3\left(x+\dfrac{1}{12}\right)^2=0\)
\(\Leftrightarrow x+\dfrac{1}{12}=0\)
\(\Leftrightarrow x=-\dfrac{1}{12}\)
Vậy: \(Q_{max}=\dfrac{5}{12}.khi.x=-\dfrac{1}{12}\)
\(A=\dfrac{3+2\left|x+2\right|}{1+\left|x+2\right|}\)
\(=\dfrac{2+2\left|x+2\right|+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)}{1+\left|x+2\right|}+\dfrac{1}{1+\left|x+2\right|}\)
\(=2+\dfrac{1}{1+\left|x+2\right|}\)
Ta có \(\left|x+2\right|\ge0\)
\(\Leftrightarrow1+\left|x+2\right|\ge1\)
\(\Leftrightarrow\dfrac{1+\left|x+2\right|}{1+\left|x+2\right|}\ge\dfrac{1}{1+\left|x+2\right|}\)
\(\Leftrightarrow\dfrac{1}{1+\left|x+2\right|}\le1\)
\(\Leftrightarrow2+\dfrac{1}{1+\left|x+2\right|}\le1+2=3\)
\(\Rightarrow A\le3\)
Dấu \("="\) xảy ra khi \(x+2=0\) \(\Leftrightarrow x=-2\)
Vậy giá trị lớn nhất của biểu thức \(A\) là \(3\)
\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)
\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)
\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
Sửa đề: 1/R(2023)
R(3)=1*3
R(4)=2*4
R(5)=3*5
...
R(2022)=2020*2022
R(2023)=2021*2023
=>\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2021\cdot2023}+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{2020\cdot2022}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2020\cdot2022}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2022}{2023}+\dfrac{505}{1011}\right)\simeq0.7496\)
Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:
$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$
Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$
$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$
Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$
A = \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)
Đặt B = \(\left|x+1\right|+\left|x-2022\right|\)
\(\left|x-2022\right|\) = \(\left|2022-x\right|\) ⇒ B = \(\left|x+1\right|+\left|2022-x\right|\)
B =\(\left|x+1\right|+\left|2022-x\right|\) ≥ \(\left|x+1+2022-x\right|\) = 2023
B(min) = 2023 ⇔ (\(x+1\))(2022-\(x\)) \(\ge\) 0
Lập bảng ta có:
Theo bảng trên ta có: B(min) = 2023 ⇔ -1 ≤ \(x\) ≤ 2022
A = \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)
Vì A dương nên A(max) ⇔ B(min) ⇔ B = 2023
A(max) = \(\dfrac{1}{2023}\) ⇔ -1 ≤ \(x\) ≤ 2022