Tìm các số tự nhiên n sao cho n! + 47 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Vì \(n+8\) và \(n+1\) là 2 SCP
nên đặt \(\left\{{}\begin{matrix}n+8=x^2\\n+1=y^2\end{matrix}\right.\) ;\(a;b\in N\) (1)
Trừ từng vế ta được:
\(x^2-y^2=7\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=7\)
Vì \(x;y\in N\) nên \(x-y< x+y\)
\(\rightarrow\left\{{}\begin{matrix}x-y=1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Thế vào (1) ta được:\(\left\{{}\begin{matrix}n+8=4^2\\n+1=3^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=8\\n=8\end{matrix}\right.\)
Vậy \(n=8\) thì \(n+8;n+1\) là 2 SCP
Lời giải:
Đặt $n^2-n+13=t^2$ với $t$ là số tự nhiên
$\Rightarrow 4n^2-4n+52=4t^2$
$\Leftrightarrow (4n^2-4n+1)+51=4t^2$
$\Leftrightarrow (2n-1)^2+51=(2t)^2$
$\Leftrightarrow 51=(2t)^2-(2n-1)^2=(2t-2n+1)(2t+2n-1)$
Đến đây là dạng phương trình tích cơ bản rồi. Bạn lập bảng xét giá trị để tìm ra $n$ thôi.
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm
Ta có n! = 1 . 2 . 3 . ... .n
nếu n>5 ⇒ n = 1 . 2 . 3 . 4 . 5 . ... .n
⇒n có tận cùng là 0
⇒n! + 47 có tận cùng = 7
mà scp không có tận cùng là 7
⇒n < 5
⇒n= 1;2;3;4
Th1 n = 1 ⇒n! = 1 ⇒n! + 47 = 48 (L)
Tương tự như vậy ta tìm được n = 2