Gpt: \(\sqrt{12-x}+\sqrt[3]{24+x}=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\le12\)
Đặt \(\hept{\begin{cases}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\end{cases}\left(b\ge0\right)\Rightarrow}a^3+b^2=36\)
PT trở thành a+b=6
Ta có hệ phương trình \(\hept{\begin{cases}a+b=6\\a^3+b^2=36\end{cases}\Leftrightarrow}\hept{\begin{cases}b=6-a\\a^3+a^2-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=6-a\\a\left(a-3\right)\left(a+4\right)=0\end{cases}}\)
Đến đây đơn giản rồi nhé
ĐKXĐ : -1 <= x <= 3
XH : \(\left(-x^2+4x+12\right)-\left(x^2+2x+3\right)=2x+9>0\)
=> VT > 0
VÌ -1 <=x <=3 => VT = \(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}.\sqrt{3-x}\)
Áp dụng BĐT \(\left(ab-cd\right)^2\le\left(a^2-c^2\right)\left(b^2-d^2\right)\) ta có :
\(VT^2=\left(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}\sqrt{3-x}\right)^2\ge\left(x+2-x-1\right)\left(6-x-3+x\right)=1.3=3\)
=> VT \(\ge\sqrt{3}\) dấu bằng xảy ra khi \(\left(x+2\right)\left(6-x\right)=\left(x+1\right)\left(3-x\right)\) <=> x = 0
VP = \(\sqrt{3}-x^2\le\sqrt{3}\)
Dấu bằng xảy ra khi x = 0
Để VT bằng VP => x = 0
ĐK: \(-3\le x\le2\)
Đặt: \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{2-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\b=1\left(tm\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=1\\\sqrt{2-x}=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+3=1\\2-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\) (tm)
Vậy....
ĐKXĐ: \(x\ge2\)
pt \(\Leftrightarrow\left(2x-6\right)+\left(3\sqrt{x-2}-\sqrt{x+6}\right)=0\)
\(\Leftrightarrow2\left(x-3\right)+\frac{9\left(x-2\right)-\left(x+6\right)}{3\sqrt{x-2}+\sqrt{x+6}}=0\)
\(\Leftrightarrow2\left(x-3\right)+\frac{8\left(x-3\right)}{3\sqrt{x-2}+\sqrt{x+6}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(2+\frac{8}{3\sqrt{x-2}+\sqrt{x+6}}\right)=0\) (1)
Với \(x\ge2\Rightarrow2+\frac{8}{3\sqrt{x-2}+\sqrt{x+6}}>0\)
(1) <=> x-3=0 <=> x=3 (tm ĐKXĐ)
Vậy x=3
Đặt a = \(\sqrt{12-x}\), b = \(\sqrt[3]{24+x}\), ta có:
a + b = 6 => a = 6 - b , (a+b)2 = 36 (1)
Có a2 + b3 = 12 - x + 24 + x = 36 (2)
(1), (2) suy ra (a+b)2 = a2 + b3
<=> a2 + 2ab + b2 = a2 + b3
<=> 2ab + b2 = b3
<=> b3 - b2 - 2ab = 0
<=> b(b2 - b - 2a)=0
Thay a = 6 - b , pt trở thành:
b(b2 - b - 2*6 + 2b) = 0
<=> b(b2 + b - 12) = 0
<=> b(b2 + 4b - 3b -12) = 0
<=> b(b - 3)(b + 4) = 0
<=> b = 0 => x = -24
b = 3 => x = 3
b = -4 => x = -88
Vậy S = {-88;-24;3}
ĐK: \(12-x\ge0\Rightarrow x\le12\)
đặt
\(\hept{\begin{cases}u=\sqrt{12-x}\\v=\sqrt[3]{24+x}\end{cases}}=>\hept{\begin{cases}u^2=12-x\\v^3=24+x\end{cases}}=>\hept{\begin{cases}u^2+v^3=36\left(1\right)\\u+v=6\left(2\right)\end{cases}}\)
từ (2) ta có: \(u=6-v\) thay vào (1) được: \(\left(6-v\right)^2+v^3=36\Leftrightarrow v^3+v^2-12v=0\)
\(\Leftrightarrow v\left(v^2+v-12\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}v=0\\v^2+v-12=0\end{cases}}\Leftrightarrow v=0;v=3;v=-4\)
với \(v=0\Rightarrow u=6\Rightarrow12-x=36\Rightarrow x=-24\)(TM)
với \(v=3\Rightarrow u=3\Rightarrow x=3\left(TM\right)\)
với \(v=-4\Rightarrow u=10\Rightarrow x=-88\left(TM\right)\)
vậy tập nghiệm của PT là S={-24,3,-88}