so sánh 2015^2016 và 2016^2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2014}{2015}\) +\(\frac{2015}{2016}\) < 2014+\(\frac{2015}{2015}\) +2016
2000/2001<1
2001/2002<1
2002/2003<1
...
2015/2016<1
=>2000/2001+2001/2002+2002/2003+2003/2004+...+2015/2016<1+1+1+1+1+...+1=15
Vậy...
Vì 20162016 + 1 < 20162017 + 1
\(\Rightarrow\frac{2016^{2016}+1}{2016^{2017}+1}< \frac{2016^{2016}+1+2015}{2016^{2016}+1+2015}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016\left(2016^{2015}+1\right)}{2016\left(2016^{2016}+1\right)}\)
\(=\frac{2016^{2015}+1}{2016^{2016}+1}=B\)
\(\Rightarrow\)A < B
Ta có :
\(A=\frac{2016^{2016}+1}{2016^{2017}+1}< \frac{2016^{2016}+2015+1}{2016^{2017}+2015+1}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016.\left(2016^{2015}+1\right)}{2016.\left(2016^{2016}+1\right)}\)
\(=\frac{2016^{2015}+1}{2016^{2016}+1}=B\)
\(\Rightarrow A< B\)
Ta có :
\(\frac{2015}{2016}>\frac{2015}{2016+2017}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)
\(\Rightarrow A>\frac{2015+2016}{2016+2017}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt !!!
\(A=\frac{2015}{2016}+\frac{2016}{2017}\) \(B=\frac{2015+2016}{4033}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}\) \(B=\frac{2015}{4033}+\frac{2016}{4033}\)
\(\Rightarrow A>B\)
Ta có :
1- 2015/2016 = 1/2016
1 - 2016/2017 = 1/2017
VÌ 1/2016 > 1/2017 nên 2015/2016 < 2016/2017
ok , k nha
\(2015^{2016}<2016^{2016}<2016^{2015}\)
2016^2016<2016^2015 ư vô lý