K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2023

A = \(\dfrac{2n+1}{8n+6}\)  (n \(\ne\) - \(\dfrac{3}{4}\))

Gọi ước chung lớn nhất của 2n + 1 và 8n + 6 là d

Ta có : \(\left\{{}\begin{matrix}2n+1⋮d\\8n+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}8n+4⋮d\\8n+6⋮d\end{matrix}\right.\) 

Trừ vế cho vế ta được:  8n + 6 - 8n - 4 ⋮ d ⇒  2 \(⋮\) d ⇒ d = { 1; 2}

Nếu d = 2 ta có: 2n + 1  ⋮ 2 ⇒ 1  ⋮ 2 ( vô lý)

Vậy d = 1 nên ước chung lớn nhất của 2n + 1 và 8n + 6 là 1

Hay phân số: \(\dfrac{2n+1}{8n+6}\) là phân số tối giản điều phải chứng minh

 

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

15 tháng 5 2016

Gọi d là ƯCLN(2n-1;8n-3)

ta có 2n-1\(⋮\)d;8n-3\(⋮\)d

=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d

=>8n-4\(⋮\)d;8n-3\(⋮\)d

=>[(8n-4)-(8n-3)]\(⋮\)d

=>[8n-4-8n+3]\(⋮\)d

=>-1\(⋮\)d

=>d=1

Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)

15 tháng 5 2016

Gọi d là UCLN(2n-1;8n-3)

=>2n-1 chia hết cho d và 8n-3 chia hết cho d

=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d

=>8n-4 chia hết cho d và 8n-3 chia hết cho d

=>8n-4-8n+3 chia hết cho d

=>-1 chia hết cho d =>d=1

=>điều phải chứng minh

Gọi d=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2n-2⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(n+1;2n+3)=1

=>n+1/2n+3 là phân số tối giản

11 tháng 7 2019

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

11 tháng 7 2019

Mọi người ai trả lời giúp mình với ! @_@

11 tháng 7 2019

Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

15 tháng 1 2017

 Gọi UWCLN(2n+1;4n2+1) = d : (n thuộc N)

Suy ra : 2n + 1 chia hết cho d , do đó 2n(2n+1)chia hết cho d

                                                     hay 4n2 + 2n chia hết cho d

Áp dụng tính chất chia hết của 1 hiệu 

  4n2 + 2n - (2n + 1) chia hết cho d

Theo bài ra 4n2 + 1 chia hết cho d . Áp dụng tính chất chia hết của 1 hiệu , ta được

4n- 1 - (4n-1) chia hết cho d

4n- 4n2 + 1 chia hết cho d

  2 chia hết cho d

Suy ra : d = {1;2}

Vì 2n + 1 và 4n2 + 1 là các số lẻ nên d=1

                         Vậy 2n+1 là các số tối giản với mọi số tự nhiên n

2 tháng 1 2018

Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d 

Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮3\)

Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\)            (1)

Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\)             (2)

Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)

Vậy thì  ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.