K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

a.-3/4  > 5/-6

b. \(-3\frac{1}{5}\)=  -14/5

      \(-3\frac{1}{6}\)=    -17/6

mà -14/5 >  -17/6

   Vậy \(-3\frac{1}{5}\) >   \(-3\frac{1}{6}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)      Ta có: \(\frac{2}{{ - 5}} = \frac{{ - 16}}{{40}}\) và \(\frac{{ - 3}}{8} = \frac{{ - 15}}{{40}}\)

Do \(\frac{{ - 16}}{{40}} < \frac{{ - 15}}{{40}}\,\, \Rightarrow \,\frac{2}{{ - 5}} < \frac{{ - 3}}{8}\).

b)      Ta có: \( - 0,85 = \frac{{ - 85}}{{100}} = \frac{{ - 17}}{{20}}\). Vậy \( - 0,85\)=\(\frac{{ - 17}}{{20}}\).

c)      Ta có: \(\frac{{37}}{{ - 25}} = \frac{{ - 296}}{{200}}\)  

Do  \(\frac{{ - 137}}{{200}} > \frac{{ - 296}}{{200}}\) nên \(\frac{{ - 137}}{{200}}\) > \(\frac{{37}}{{ - 25}}\) .

d)      Ta có: \( - 1\frac{3}{{10}}=\frac{-13}{10}\) ;

\(-\left( {\frac{{ - 13}}{{ - 10}}} \right) = \frac{{-13}}{{10}}\).

Vậy \(- 1\frac{3}{{10}} =-(\frac{{-13}}{{-10}})\,\).

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)      Ta có \(\frac{{ - 2}}{3} < 0\) và \(\frac{1}{{200}} > 0\) nên \(\frac{{ - 2}}{3}\)<\(\frac{1}{{200}}\).

b)      Ta có: \(\frac{{139}}{{138}} > 1\) và \(\frac{{1375}}{{1376}} < 1\) nên \(\frac{{139}}{{138}}\) > \(\frac{{1375}}{{1376}}\).

c)      Ta có: \(\frac{{ - 11}}{{33}} = \frac{{ - 1}}{3}\) và \(\frac{{25}}{{ - 76}} = \frac{{ - 25}}{{76}} > \frac{{ - 25}}{{75}} = \frac{{ - 1}}{3}\,\,\,\, \Rightarrow \frac{{25}}{{ - 76}} > \frac{{ - 11}}{33}\).

a: -2/3<0<1/200

b: 139/138>1

1375/1376<1

=>139/138>1375/1376

c: -11/33=-1/3=-25/75<-25/76

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

a, Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên hàm số nghịch biến trên \(\left(0;+\infty\right)\)

Mà \(4,8< 5,2\Rightarrow log_{\dfrac{1}{2}}4,8>log_{\dfrac{1}{2}}5,2\)

b, Ta có: \(log_{\sqrt{5}}2=2log_52=log_54\)

Hàm số \(y=log_5x\) có cơ số 5 > 1 nên hàm số đồng biến trên \(\left(0;+\infty\right)\)

Do \(4>2\sqrt{2}\Rightarrow log_54>log_52\sqrt{2}\Rightarrow log_{\sqrt{5}}2>log_52\sqrt{2}\)

c, Ta có: \(-log_{\dfrac{1}{4}}2=-\dfrac{1}{2}log_{\dfrac{1}{2}}2=log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}\)

Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên nghịch biến trên \(\left(0;+\infty\right)\)

Do \(\dfrac{1}{\sqrt{2}}>0,4\Rightarrow log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}< log_{\dfrac{1}{2}}0,4\Rightarrow-log_{\dfrac{1}{4}}2< log_{\dfrac{1}{2}}0,4\)

a: \(2^{\dfrac{6}{3}}=2^2\)

b: \(2^{\dfrac{6}{3}}=2^2=4\)

\(\sqrt[3]{2^6}=\sqrt[3]{64}=4\)

=>\(2^{\dfrac{6}{3}}=\sqrt[3]{2^6}\)

20 tháng 8 2023

tham khảo

a) Do \(0,85< 1\) nên hàm số \(y=0,85^x\) nghịch biến \(\mathbb{R}\).

Mà \(0,1>-0,1\) nên \(0,85^{0,1}< 0,85^{-0,1}\).

b) Do \(\pi>1\) nên hàm số \(y=\pi^x\) đồng biến trên \(\mathbb{R}\).

Mà \(-1,4< -0,5\) nên \(\pi^{-1,4}< \pi^{-0,5}\).

c) \(^4\sqrt{3}=3^{\dfrac{1}{4}};\dfrac{1}{^4\sqrt{3}}=\dfrac{1}{3^{\dfrac{1}{4}}}=3^{-\dfrac{1}{4}}\).

Do \(3>1\) nên hàm số \(y=3^x\) đồng biến trên \(\mathbb{R}\).

Mà \(\dfrac{1}{4}>-\dfrac{1}{4}\) nên \(3^{\dfrac{1}{4}}>3^{-\dfrac{1}{4}}\Leftrightarrow^4\sqrt{3}>\dfrac{1}{^4\sqrt{3}}\).

 

 

29 tháng 10 2023

5và 3/8-1 và 5/6

 

27 tháng 2 2020

a)\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}=\frac{71}{20}\)  và \(4=\frac{4}{1}=\frac{80}{20}\)
mà 80 > 7 suy ra
 \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}< 4\)

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}\)  và \(1=\frac{8}{8}\)
mà 7 < 8 suy ra \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}< 1\)
 

HQ
Hà Quang Minh
Giáo viên
2 tháng 10 2023

1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60. 

Thừa số phụ:

60:12 =5; 60:15=4

Ta được:

\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)

\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)

 b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252. 

Thừa số phụ:

252:7 = 36; 252:9 = 28; 252:12 = 21

Ta được:

\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)

\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)

\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)

2. a) Ta có BCNN(8, 24) = 24 nên:

\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)

 b) Ta có BCNN(12, 16) = 48 nên:

\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).

16 tháng 4 2017

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

16 tháng 4 2017

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .