K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^2+x+1=(x+1/2)^2+3/4>=3/4

=>A<=1:3/4=4/3

Dấu = xảy ra khi x=-1/2

DD
26 tháng 6 2021

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

10 tháng 7 2021

undefined

18 tháng 12 2018

Câu 2 hình như sai đề bạn ey.

18 tháng 12 2018

Câu 1: 

Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)

Thật vậy,điều cần c/m  \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)

Vậy BĐT phụ (Cô si) là đúng.

----------------------------------------------------------

Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)

Do đó: 

\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

Câu 2:

ĐKXĐ: x<>0

\(B=\dfrac{-x^2-x-1}{x^2}\)

\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)

\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)

\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)

Dấu '=' xảy ra khi 1/x+1/2=0

=>1/x=-1/2

=>x=-2

18 tháng 3 2016

\(y=\frac{x+1}{x^2+x+1}\Leftrightarrow y\left(x^2+x+1\right)=x+1\Leftrightarrow x^2y+xy+y-x-1=0\)

\(\Leftrightarrow yx^2+\left(y-1\right)x+y-1=0\) 

*Khi y =0 => x = -1

*Khi y khác 0 ta có pt bậc 2 ẩn x tham số y :

\(\Delta=\left(y-1\right)^2-4y\left(y-1\right)=-3y^2+2y+1\)

Pt có nghiệm <=> - 3y2 +2y +1 >=0 <=> 3y2 -2y -1 <=0 <=> -1/3 <=y <=1

Vì y =0 < y = 1, nên 0 không phải là GTLN.

Vậy GTLN của y = 1 <=> x = 0

18 tháng 3 2016

Cách khác lớp 8:

\(y=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\), vì x2/x2 +x +1 <=0, với mọi x

Dấu = xảy ra khi x = 0

31 tháng 1 2022

bạn ơi x+1 hay \(x^2+1\) vậy pạn??

\(\dfrac{\left(x+1\right)}{x^2+x+1}\)