K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Đặt \(A=\frac{x^2+2x-1}{x-1}\)

           Ta có:\(A=\frac{x^2+2x-1}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)

      Vậy để A nguyên thì x thỏa mãn mõi số nguyên

                       

8 tháng 5 2017

chịu chưa học lớp 6

5 tháng 11 2016

Ta có: \(\frac{2x+5}{x+2}=\frac{2x+4}{x+2}+\frac{1}{x+2}=\frac{2.\left(x+2\right)}{x+2}+\frac{1}{x+2}=2+\frac{1}{x+2}\)

Nên \(\frac{2x+5}{x+2}=2+\frac{1}{x+2}\)

Để \(\frac{2x+5}{x+2}\) có giả trị nguyên thì \(2+\frac{1}{x+2}\) có giá trị nguyên

Nên x + 2 thuộc Ư(1) = {-1;1}

Ta có bảng : 

x + 2-11
x-3-1

Vậy x = {-3;-1}

3 tháng 8 2018

\(P=\left(\frac{2x}{2x^2-5x+2}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right) \)(dk x khac 3/2 ; x khac 1)

 
\(P=\left(\frac{2x}{\left(2x-3\right)\left(x-1\right)}-\frac{5\left(x-1\right)}{\left(2x+3\right)\left(x-1\right)}\right):\left(\frac{3\left(x-1\right)}{x-1}-\frac{2}{x-1}\right)\)

\(P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{3x-3-2}{x-1}\)

\(P=\frac{-\left(3x-5\right)}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{x-1}{3x-5}\)

\(P=\frac{-1}{2x-3}\)

b) TC: \(|2x-1|=3\)

TH1) \(|2x-1|=2x-1\)khi \(x\ge\frac{1}{2}\)

2x-1=3 suy ra x=2 ( thoa dk)

TH2) \(|2x-1|=-2x+1\)khi \(x< \frac{1}{2}\)

-2x+1=3 suy ra x=-1 ( thoa dk)

khi x= 2 thi P=-1 

khi x= -1 thi P=1/5

c) de P thuoc Z thi \(-\frac{1}{2x-3}\)thuoc Z 

suy ra \(\frac{1}{3-2x}\)thuoc Z
suy ra 3-2x thuoc \(Ư\left(1\right)\in\left\{\pm1\right\}\)

khi 3-2x=1 thi x= 1 (ko thoa dk x khac 1)

khi 3-2x=-1 thi x=2(thoa dk)

vay x=2 thi P thuoc Z

d) giai tg tu cau c

Tìm x thuộc Z để A thuộc Z nha mn :)

19 tháng 2 2020

Để \(A\inℤ\) thì \(2A\inℤ\)

Ta có: \(2A=\frac{2\left(x-1\right)}{2x+3}=\frac{2x-2}{2x+3}=\frac{2x+3-5}{2x+3}=1-\frac{5}{2x+3}\)

Vì \(1\inℤ\)\(\Rightarrow\) Để \(2A\inℤ\)thì \(5⋮2x+3\)

\(\Rightarrow2x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng giá trị ta có: 

\(2x+3\)\(-5\)\(-1\)\(1\)\(5\)
\(2x\)\(-8\)\(-4\)\(-2\)\(2\)
\(x\)\(-4\)\(-2\)\(-1\)\(1\)

Thay các giá trị của x vào A ta thấy tất cả đều thoả mãn \(A\inℤ\)

Vậy \(x\in\left\{-4;-2;-1;1\right\}\)