K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:

IN chung

MNI = KNI (do NI là phân giác của ∠MNP)

⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)

b) ∆IKP vuông tại K

IP là cạnh huyền nên IP lớn nhất

IK < IP (1)

Do ∆IMN = ∆IKN (cmt)

⇒ MI = IK (2)

Từ (1) và (2)⇒ MI < IP

c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:

IM = IK (cmt)

∠PIK = ∠MIQ (đối đỉnh)

∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)

⇒ KP = MQ (hai cạnh tương ứng)  (3)

Do ∆IMN = ∆IKN (cmt)

⇒ MN = KN (hai cạnh tương ứng)   (4)

Từ (3) và (4) ⇒ KN + KP = MN + MQ

NP = NQ

⇒ ∆NPQ cân tại N

Lại có NI là phân giác của ∠MNP

⇒ NI là phân giác của ∠QNP

⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)

⇒ ND ⊥ QP

9 tháng 5 2023

Giúp vs ạ mình đang cần gấp

a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K co

NI chung

góc MNI=góc KNI

=>ΔNMI=ΔNKI

b: Xet ΔIMA vuông tại M và ΔIKP vuông tại K có

IM=IK

góc MIA=góc KIP
=>ΔIMA=ΔIKP

=>KI=IM

=>KI<IA

a: Xet ΔIMN và ΔIKN có

NM=NK

góc MNI=góc KNI

NI chung

=>ΔIMN=ΔIKN

=>góc IKN=90 độ

b:Xet ΔNKA vuông tại K và ΔNMP vuông tại M có

NK=NM

góc N chung

=>ΔNKA=ΔNMP

=>NA=NP

=>ΔNAP cân tại N

mà NI là phân giác

nên NI vuông góc PA

1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔNMI=ΔNKI

Suy ra: NM=NK

hay ΔNMK cân tại N

2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có

IM=IK

\(\widehat{MIQ}=\widehat{KIP}\)

Do đó: ΔMIQ=ΔKIP

Suy ra: MQ=KP

Ta có: NM+MQ=NQ

NK+KP=NP

mà NM=NK

và MQ=KP

nên NQ=NP

hayΔNQP cân tại N

3: Xét ΔNQP có 

NM/MQ=NK/KP

nên MK//QP

1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có

MK chung

góc IMK=góc AMK

=>ΔMIK=ΔMAK

=>góc IKM=góc AKM

=>KM là phân giác của góc AKI

2: KI=KA

KA<KP

=>KI<KP

3: Xét ΔMBP có

PI,BA là đường cao

PI cắt BA tại K

=>K là trực tâm

=>MK vuông góc PB

MI=MA

KI=KA

=>MK là trung trực của AI

=>MK vuông góc AI

=>AI//PB

14 tháng 3 2021

Xét tam giác MNI và MPI có

       MI là cạnh chung

       MN = MP( tam giác MNP cân)

       Góc MIN = góc MIP = 90°

=> Tam giác MIN = tam giác MIP( cgv - ch)

IN = IP = 5 cm nên I là trung điểm của NP

b) Tam giác MIN vuông tại I có

NI2 + MI2 = MN2(  định lí Pytago)

MI2 + 52 = 142

MI2 + 25 = 196

MI2 = 144

MI=12

c) Xét tam giác PHI và PKI có

         MI là cạnh chung

         Góc HMI = KMI ( tam giác NMI = PMI )

          Góc IHM = IKM = 90° 

=》 Tam giác HMI = KMI ( ch - gn)

=》IH=IK

a: Xét tứ giác MKIE có 

\(\widehat{MKI}=\widehat{MEI}=\widehat{EMK}=90^0\)

Do đó: MKIE là hình chữ nhật

b: Xét ΔMPN có

I là trung điểm của NP

IK//MP

Do đó: K là trung điểm của MN

Ta có: K là trung điểm của MN

mà IK⊥MN

nên IK là đường trung trực của MN

1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔNMI=ΔNKI

Suy ra: NM=NK

hay ΔNMK cân tại N

2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có

IM=IK

\(\widehat{MIQ}=\widehat{KIP}\)

Do đó: ΔMIQ=ΔKIP

Suy ra: MQ=KP

Ta có: NM+MQ=NQ

NK+KP=NP

mà NM=NK

và MQ=KP

nên NQ=NP

hayΔNQP cân tại N

3: Xét ΔNQP có 

NM/MQ=NK/KP

nên MK//QP