cho tam giác ABC{AB<AC}.Vẽ phân giác AD của tam giác ADC.trên cạnh AC lấy E sao cho AE=AB
A} chứng minh tam giác ADB=tam giác ADC
B} chung minh ADla duong trung tuyen cua BE
C} goi F la giao diem cua AB va DE
Chung minh DBF = DEC va tam giac BFD =tam giac ECD
a) Phần a bn chép sai đề rùi phải là tam giác ADB = tam giác ADE mới đúng !.
Xét tam giác ADB và tam giác ADE có:
AB = AE ( theo đề bài )
\(\widehat{BAD}=\widehat{CAD}\)( Vì AD là tia phân giác của \(\Delta ADC\))
AD là cạnh chung
Do đó tam giác ADB = tam giác ADE( c.g.c)
b) Gọi giao điểm của AD và BE là H
Xét tam giác AHB và AHE có:
AH là cạnh chung
\(\widehat{BAD}=\widehat{EAD}\) ( Vì AD là tia phân giác của \(\Delta ADC\) )
AB =AE ( theo đề bài )
Do đó tam giác AHB = tam giác AHE ( c.g.c)
\(\Rightarrow BH=EH\) ( 2 cạnh tương ứn0g)
\(\Rightarrow\)AD là đường trung tuyến của BE
c) *Có tam giác ADB = tam giác ADE ( theo c/m câu a)
\(\Rightarrow\) \(BD=DE\) (2 cạnh tương ứng ) \(\left(1\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{AED}\) ( 2 góc tương ứng )
mà:
\(\widehat{ABD}+\widehat{DBF}=180^0\Rightarrow\widehat{DBF}=180^0-\widehat{ABD}\)
\(\widehat{AED}+\widehat{DEC}=180^0\Rightarrow\widehat{DEC}=180^0-\widehat{AED}\)
\(\Rightarrow\widehat{DBF}=\widehat{DEC}\)
*Xét tam giác BFD và tam giác ECD có:
\(\widehat{DBF}=\widehat{DEC}\left(cmt\right)\)
\(BD=ED\left(1\right)\)
\(\widehat{BDF}=\widehat{EDC}\) (2 góc đối đỉnh)
Do đó: tam giác BFD = tam giác ECD (g.c.g)
bn ve hinh nhu the nao