K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{2015.2016.2017}\)

\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\frac{3}{2}.\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\frac{3}{2}.\left(\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)

\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)

\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)

\(A=\frac{3}{4}-\frac{3}{2.2016.2017}< 1\)

29 tháng 4 2018

* Công thức :  \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{2015.2016.2017}\)

\(\Rightarrow A=3.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{2}-\frac{1}{4066272}\right)\)

\(\Rightarrow A=3.\left(\frac{2033136}{4066272}-\frac{1}{4066272}\right)\)

\(\Rightarrow A=3.\frac{2033135}{4066272}>3.\frac{1355424}{4066272}\)

\(\Rightarrow A>3.\frac{1}{3}\)

\(\Rightarrow A>1\)

Chúc bạn học tốt !!! 

29 tháng 4 2018

Thanks bạn Hỏa Long Natsu

9 tháng 12 2023

Giải thích:

Để so sánh giá trị của biểu thức A với 3/2, ta cần tính giá trị của biểu thức A và so sánh nó với giá trị của 3/2.

 

Lời giải:

Để tính giá trị của biểu thức A, ta thực hiện các bước sau:

1. Tính tử số và mẫu số của từng phân số trong biểu thức A.

2. Tính giá trị của từng phân số.

3. Cộng tất cả các giá trị đã tính được.

 

Đầu tiên, ta tính tử số và mẫu số của từng phân số trong biểu thức A:

- Tử số của phân số thứ nhất là 4, mẫu số là 1.2.3.

- Tử số của phân số thứ hai là 6, mẫu số là 2.3.4.

- Tử số của phân số thứ ba là 8, mẫu số là 3.4.5.

- ...

- Tử số của phân số cuối cùng là 200, mẫu số là 99.100.11.

 

Tiếp theo, ta tính giá trị của từng phân số:

- Giá trị của phân số thứ nhất là 4/(1.2.3) = 4/6 = 2/3.

- Giá trị của phân số thứ hai là 6/(2.3.4) = 6/24 = 1/4.

- Giá trị của phân số thứ ba là 8/(3.4.5) = 8/60 = 2/15.

- ...

- Giá trị của phân số cuối cùng là 200/(99.100.11).

 

Cuối cùng, ta cộng tất cả các giá trị đã tính được:

A = (2/3) + (1/4) + (2/15) + ... + (200/(99.100.11)).

 

Sau khi tính giá trị của biểu thức A, ta so sánh nó với giá trị của 3/2 để xác định mối quan hệ giữa chúng.

Tra bài tập tại Checkmath là ra 

😀😀

28 tháng 10 2016

Ta có: k(k + 1)(k + 2) = 1/4. k(k + 1)(k + 2). 4
= 1/4. k(k + 1)(k + 2). [(k + 3) - (k - 1)]
= 1/4. k(k + 1)(k + 2)(k + 3) - 1/4. k(k + 1)(k + 2)(k - 1)
=> 4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
= k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Đây là tổng của 4 số liên tiếp cộng 1 nên luôn là số chính phương.

29 tháng 10 2016

cam on rat nhieu

16 tháng 5 2018

Ta có : 

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)

\(\Rightarrow A=\left(\frac{1}{2}-\frac{1}{2015.2016}\right):2\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{2015.2016}\)

\(\Rightarrow A< \frac{1}{4}\)

Vậy A < \(\frac{1}{4}\)

_Chúc bạn học tốt_

16 tháng 5 2018

Ta có:

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{2014+2015+2016}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{2014.2015.2016}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)

\(2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)

\(\Rightarrow2A< \frac{1}{1.2}=\frac{1}{2}\)

\(\Rightarrow A< \frac{1}{4}\)

Vậy .... 

23 tháng 3 2023

A = 3/1.2.3 +3/2.3.4 + ............ + 3/98 . 99 . 100

2A = 2.3 / 1.2.3 + ...........+ 2.3/98.99.100

2A= 3. ( 2/1.2.3 + ............. + 2/98.99.100)

2A= 3.( 1/1.2 - 1/2.3 + .......... + 1/98 .99 - 1/99 . 100)

2A = 3.(1/2 - 1/990)

2A = 3. 247/495

2A = 741/495

A = 741/495 : 2

A = 247 / 330

23 tháng 3 2023

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

5 tháng 5 2016

A = 1 - 1/2 - 1/3 + 1/2 - 1/3 - 1/4 + ... + 1/2014 - 1/2015 - 1/2016

A = 1- 1/2016

A = 2015/2016

A > 1/4

A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2015.2016.2017}\)

\(\Leftrightarrow\)A=\(\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}-\frac{2}{2017}\)

\(\Leftrightarrow\)A=\(\frac{1}{1}-\frac{1}{2017}\)

\(\Leftrightarrow\)A=\(\frac{2016}{2017}\)

mk quên:Có \(\frac{2016}{2017}< \frac{1}{4}\) \(\Rightarrow\)S<\(\frac{1}{4}\)

15 tháng 4 2019

\(M=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\right)\)

\(M=\frac{1}{2}.\left(1-\frac{1}{102}\right)\)

\(M=\frac{101}{204}< 1\left(đpcm\right)\)

 

Ta có: M=11.2.3  +12.3.4  +13.4.5  +...+1100.101.102  

         M=2.(11.2.3  +12.3.4  +13.4.5  +...+1100.101.102  ).12 

          M=(21.2.3  +22.3.4  +23.4.5  +...+2100.101.102  ).12 

          M=(11.2  -12.3  +12.3  -13.4  +13.4  -14.5 +...+1100.101 1101.102  ).12 

          M=( 11.2 1101.102 ).12 

          Mà 11.2 1101.102 <1

         Và 12 <1 

        =>  (11.2 1101.102  ) .12  <1

        => M <1

nhớ 9 k đó